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Online scheduling of jobs with kind release times and

deadlines on a single machine

LI Wen-jie1 MA Ran2,∗ FENG Qi3

Abstract. This paper studies online scheduling of jobs with kind release times on a single

machine. Here “kind release time” means that in online setting, no jobs can be released when

the machine is busy. Each job J has a kind release time r(J) ≥ 0, a processing time p(J) > 0

and a deadline d(J) > 0. The goal is to determine a schedule which maximizes total processing

time (
∑

p(J)E(J)) or total number (
∑

E(J)) of the accepted jobs. For the first objective

function
∑

p(J)E(J), we first present a lower bound
√

2, and then provide an online algorithm

LEJ with a competitive ratio of 3. This is the first deterministic algorithm for the problem with

a constant competitive ratio. When p(J) ∈ {1, k}, k > 1 is a real number, we first present a

lower bound min{(1 + k)/k, 2k/(1 + k)}, and then we show that LEJ has a competitive ratio of

1 + dke/k. In particular, when all the k length jobs have tight deadlines, we first present a lower

bound max{4/(2 + k), 1} (for
∑

p(J)E(J)) and 4/3 (for
∑

E(J)). Then we prove that LEJ is

dke/k-competitive for
∑

p(J)E(J) and we provide an online algorithm H with a competitive

ratio of 2dke/(dke+ 1) for the second objective function
∑

E(J).

§1 Introduction and Notation

Online scheduling problems have received extensive attention in the recent three decades.

The state-of-the-art reviews on online scheduling were provided by Pruhs, et al. [10], Tan and

Zhang [11], and Tian, et al. [13]. Three basic models have been proposed: online over list,

online non-clairvoyance and online over time. In this paper, we study the online over time

model. In this case, the characteristics of each job, including its release time, processing time

and deadline, are unknown until it is released.
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For a maximization problem, the competitive ratio ρA of an online algorithm A is defined

to be ρA = sup{OPT(I)/A(I)}, where I is a sequence of jobs with OPT(I) > 0. Here, for a

sequence I of jobs, A(I) is the objective value of the schedule obtained by algorithm A, and

OPT(I) is the objective value of an off-line optimal schedule. An online algorithm A is called

best possible if no online algorithm has a competitive ratio less than that of A. In particular,

when ρA = 1, we say A is an optimal online algorithm for the problem. Occasionally, we use

OPT to denote an optimal schedule.

Since the jobs’ information is unknown in advance, most online algorithms have competitive

ratios greater than 1. To improve the performance of online strategy, some beneficial scheduling

environments are suggested in the literature, which include scheduling with preemption (Baker

[2]), scheduling with restart (Hoogeveen, et al. [6], scheduling with lookahead (Keskinocak [7]),

and so on. Online scheduling of jobs with kind release times is a new schedule environment

which was firstly introduced by Li and Yuan [9]. “Kind release time (say KRT)” implies that in

online setting, no jobs can be released when the machine is busy. The job instance generated in

the KRT environment is dependent on the online strategy. This is different from the traditional

online setting.

The research in this paper is motivated by the phenomenon that, the outpatient appointment

in a hospital. Before going to the hospital, one patient (job) should first make an appointment

(arrive time) with the doctor (machine). In general, the doctor can accept the appointment

only when he or she is available. Moreover, KRT setting may help to improve the competitive

ratio of online algorithm for some online problems. One typical example is the problem 1 |
online, rj |

∑
wjCj . Anderson and Potts [1] provided a 2-competitive best possible online

algorithm for this problem. On the other hand, under the KRT setting, the online version of

Smith’s SWPT rule can solve the above problem optimally. Another typical example is the

problem Pm | online, rj ,p-batch, b = ∞ | Cmax. Here, “p-batch” means that the machine can

process at most b jobs simultaneously as a batch. Jobs processed in the same batch have the

same starting time and completion time; “b =∞” implying that the batch capacity is unlimited.

For this problem, the best possible online algorithm in Tian, et al. [12], and Liu, et al. [8] has

a competitive ratio of (2 −m +
√
m2 + 4)/2. On the other hand, under the KRT setting, the

online version of Graham’s LS rule can solve the above problem optimally.

Suppose that, there are jobs to be scheduled on a single machine. The jobs arrive over time.

Each job J has a release time r(J) ≥ 0, a processing time p(J) > 0, and a deadline d(J) > 0.

Especially, if d(J) = r(J) + p(J), J is called a tight job, or equivalently, J has a tight deadline.

For a given schedule, the completion time of job J is denoted by C(J). J is called early (or

on time) if C(J) ≤ d(J), and tardy otherwise. The early indicator number of job J is defined

by E(J) = 1 if J is early, and E(J) = 0 if J is tardy. We assume that the tardy jobs will

not be accepted by a schedule. So, if job J is accepted by a schedule, it must be an early job.

The objective is to find a schedule so that the total processing time (
∑
p(J)E(J)) or total

number (
∑
E(J)) of the accepted jobs is maximized. A job J is said to be effective at time t

if t+ p(J) ≤ d(J). We say a job J expires at time t if t+ p(J) > d(J).
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Online scheduling of jobs with deadlines is a big research direction in the modern scheduling

theory. So, there have been lots of results on this area. Here we only mention the results that are

closely related to this paper. As the first positive result on the online version, Baruah, et al. [3]

showed that a greedy algorithm is 2-competitive for 1 | online, r(J), p(J) = p |
∑
E(J). In fact,

they showed that 2-competitiveness holds for any non-preemptive deterministic algorithm that

is never idle at times when some jobs are available for execution. Goldman, et al. [5] showed

that the above greedy algorithm is a best possible online algorithm. When restart is allowed,

Chrobak, et al. [4] provided a best possible online algorithm for 1 | online, r(J), p(J) = p |∑
E(J) which has a competitive ratio of 3/2. Here “restart” means that we may interrupt

some running jobs and the processing of these jobs is wasted. Then interrupted jobs are

released and become independently unscheduled jobs. Hoogeveen, et al. [6] provided a best

possible online algorithm for 1 | online, r(J) |
∑
E(J) which has a competitive ratio of 2.

Goldman, et al. [5] first studied the problem 1 | online, r(J), p(J) ∈ P |
∑
p(J)E(J), where P =

{1, k}, {1, 2, · · · , 2c}, or {p(J) : 1 ≤ p(J) ≤ 2c}, k > 1 is a real number and c > 1 is a positive

integer. When P = {1} and d(J) − r(J) ≥ 2, they provided a 3/2-competitive deterministic

algorithm. For the case that P = {1, k}, they obtained a 4-competitive randomized algorithm.

If P = {1, 2, ..., 2c} and P = {p(J) : 1 ≤ p(J) ≤ 2c}, they gave a randomized algorithm with a

competitive ratio of 3(c+ 1) and 6(c+ 1), respectively. To the best of our knowledge, when the

processing time of jobs is arbitrary, no results about the deterministic algorithm were reported

in the literature.

§2 Problem formulation and main results

We study online scheduling of jobs with deadlines under the KRT setting on a single machine.

The goal is to determine a schedule which maximizes
∑
p(J)E(J) and

∑
E(J). The introduc-

ing of the KRT setting is motivated by beating the 2-competitiveness of online algorithms in

Hoogeveen, et al. [6]. Due to the hardness of this problem, we first study a special version.

Suppose that the length of each job is either 1 or k (where k > 1 is a real number) and all the

k length jobs have tight deadlines. On the other hand, we try to design a deterministic online

algorithm for 1 | online, r(J) |
∑
p(J)E(J) under the KRT environment. The problems studied

in this paper can be denoted by 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
E(J) (or

∑
p(J)E(J))

and 1 | online,KRT, r(J) |
∑
p(J)E(J), respectively. We summarize the main results of this

paper as follows:

• For 1 | online,KRT, r(J) |
∑
p(J)E(J), we first present a lower bound

√
2, and then

provide an online algorithm LEJ with a competitive ratio of 3.

• For 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
p(J)E(J), we first present a lower bound

min{(1 + k)/k, 2k/(1 + k)}, and then we prove that LEJ has a competitive ratio of 1 + dke/k.

• For 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
p(J)E(J), when all long jobs are tight, we

first present a lower bound max{4/(2 + k), 1}, and then we show that LEJ has a competitive

ratio of dke/k. This implies that LEJ is an optimal online algorithm for the case where k is a
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positive integer.

• For 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
E(J), when all long jobs are tight, we first

present a lower bound 4/3, and then prove that H has a competitive ratio of 2dke/(dke + 1).

This means that H is a best possible online algorithm for 1 < k ≤ 2.

§3 For the objective function:
∑

E(J)

In this section, we study the problem 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
E(J) under

the constraint that all the k length jobs are tight (i.e., d(J) = r(J) + k for any long job J). We

first provide a lower bound of 4/3 , then we design an online algorithm H and prove that the

competitive ratio of H is 2dke/(dke+ 1).

3.1 The lower bound

Theorem 3.1. For problem 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
E(J), no online algorithms

have a competitive ratio less than 4/3.

Proof. The jobs, written in the form Jj = (r(Jj), p(Jj), d(Jj)) are J1 = (0, k, k), J2 = (0, 1, d),

J3 = (0, 1, d), J4 = (k, 1, d), J5 = (k, 1, d), where d = max{k, 2} + 2. Note that 4 ≤ d <

k + 3. The instance I is the jobs set {J1, J2, J3} or {J1, J2, J3, J4, J5}. For an arbitrary online

algorithm A, we distinguish the following two cases to construct the job instance I by the

adversary.

Case 1. Algorithm A starts J1 at time 0, then jobs J4, J5 arrive at time k. since k > 1

and 4 ≤ d < k + 3, there are at most two unit jobs scheduled during the time interval [k, d]

by A. So, A(I) ≤ 3. Note that, OPT can schedule all the unit jobs in I. It follows that

OPT(I)/A(I) ≥ 4/3.

Case 2. Algorithm A does not start J1 at time 0, then no other jobs will arrive after time

0, and so A(I) ≤ 2 and OPT(I) = 3. Hence OPT(I)/A(I) ≥ 3/2.

Combining the above discussion, we have OPT(I)/A(I) ≥ min{4/3, 3/2} = 4/3.

3.2 Online algorithm H

We refer to the length 1 jobs as short jobs, and the length k jobs as long jobs. For conve-

nience, a short job is indicated by Ja and a long job is indicated by Jb. Let t be the current

time. A job J is said to be effective at time t if t + p(J) ≤ d(J). We say a job J expires at

time t if t+ p(J) > d(J). We use U(t) to denote the set of all unscheduled effective jobs (i.e.,

available but not expired at time t) at time t. Consider an arbitrary instance I of jobs. For

each job Jb ∈ I, we have d(Jb) = r(Jb) + k. So, we can assume that at most one long job is

released at one time point and U(t) contains at most one long jobs for any time point t.

At time t, we call U(t) a complete job set if EDD strategy can accept all jobs in U(t). Note

that, if U(t) is a complete job set and contains a long job Jb, then Jb must be the job in U(t)

with the smallest deadline. Online algorithm H works as follows.
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Algorithm H

Step 0: Set t = 0.

Step 1: If U(t) = ∅, then wait until a new job arrives and reset t to be the release time of

such job.

Step 2: If U(t) 6= ∅ and the machine is idle, then do the following.

Step 2.1: If U(t) contains no long jobs, then pick a short job from U(t) with the smallest

deadline and start it at time t. Reset t := t+ 1, go to step 1. Otherwise, go to step

2.2.

Step 2.2: Assume that U(t) contains a long job Jb. Then distinguish the following two

cases.

Step 2.2.1: If U(t) is a complete job set, then start Jb on the machine at time t. Reset

t := t+ k, go to step 1. Otherwise, go to step 2.2.2.

Step 2.2.2: Obviously, U(t) contains at least one short job. Then pick a short job from

U(t) with the smallest deadline and start it at time t. Reset t := t+ 1, go to step 1.

3.3 Analysis

Consider any job instance I. Let σ(I) denote the schedule generated by H for I. When

no ambiguity can occur, we also use σ(I) to denote the set of jobs accepted by H. We call a

maximal subsequence σb(I) ⊆ σ(I) a big block, if all jobs in σb(I) are long jobs and these long

jobs are processed continuously by H. Similarly, we call a maximal subsequence σa(I) ⊆ σ(I) a

small block, if all jobs in σa(I) are short jobs and these short jobs are processed continuously

by H. Let Sb, Sa, Cb, Ca be the starting time of the first job and the completion time of the

last job in σb(I) and σa(I), respectively. For any job J ∈ I, we use s(J), s∗(J), c(J), c∗(J) to

denote the starting time and completion time of J in H and OPT, respectively. For any other

forms of big block (or small block) the above notation and terminology for σb(I) (or σa(I)) are

similarly understood.

Below, we will prove that the competitive ratio of algorithm H is ρ = 2dke/(dke+1). Let I be

a smallest counterexample about the problem (i.e., a counterexample consisting of a minimum

number of jobs). Then OPT(I) > ρH(I). Recall that σ(I) denote the schedule produced by H

for the instance I. We use α and β to denote the number of short jobs and long jobs in σ(I),

respectively. Then we have H(I) = |σ(I)| = α + β. We use C0 and CI to denote the release

time of the first job and the completion time of the last job in σ(I). Then we have the following

two observations.

Observation 3.1. Instance I must consist of short jobs and long jobs.
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Proof. If possible, assume that instance I only contains one kind jobs (short jobs or long jobs).

Since all jobs in I have kind release times and algorithm H schedules jobs under EDD rule, H

is an optimal algorithm for I. So, we have H(I) = OPT(I). This contradicts the definition of

I.

Observation 3.2. All jobs in σ(I) are processed contiguously by H, i.e., there is no idle time

interval between [C0, CI).

Proof. Suppose that there are idle time intervals between [C0, CI). Let [s, t] ⊂ [C0, CI) be the

last such idle time interval. Set V = {J : r(J) ≥ t}. Then we have OPT(I) ≤ OPT(I \ V ) +

OPT(V ). By H, H(I) = H(I\V )+H(V ). By the definition of I, we have OPT(I\V ) ≤ ρH(I\V )

and OPT(V ) ≤ ρH(V ). Consequently, OPT(I) ≤ ρH(I). This contradicts the choice of I.

By Observation 3.2, all jobs in σ(I) are scheduled continuously. We divide the whole schedule

σ(I) into two sorts of blocks, big blocks σbj(I) and small blocks σaj (I) with j = 0, 1, ...,m. For

each 0 ≤ j ≤ m, we assume that σbj(I) and σaj (I) are adjacent to each other and σbj(I) is prior

to σaj (I). Namely, the completion time of the last job in σbj(I) is just the starting time of the

first job in σaj (I) (i.e., Cbj = Saj ). In particular, if σb0(I) (or σam(I)) does not exist, then we set

σb0(I) = ∅ (or σam(I) = ∅).

Observation 3.3. For any short job Ja ∈ I \ σ(I), d(Ja) /∈
⋃

0≤j≤m[Sbj + 1, Cbj + 1).

Proof. For any short job Ja ∈ I \ σ(I), we have d(Ja) ∈ [C0 + 1, CI + 1). Suppose that there

exists a short job Ja ∈ I\σ(I) and a long job Jb ∈ σbh(I) such that d(Ja) ∈ [s(Jb)+1, c(Jb)+1) ⊆
[Sbh + 1, Cbh + 1), where 1 ≤ h ≤ m. Since Ja has kind release time, Ja has been released at

time s(Jb). So, we have Ja, Jb ∈ U(s(Jb)). Note that, U(s(Jb)) is not a complete job set

at time s(Jb). By H, Jb cannot be scheduled at time s(Jb). This contradicts the fact that

Jb ∈ σbh(I).

For each small block σaj (I) ⊆ σ(I), j = 0, 1, ...,m. Set Xj = σaj (I)∪{Ja ∈ I \σ(I) : Saj +1 ≤
d(Ja) < Caj + 1} ∪ {Jb ∈ I : r(Jb) ∈ [Saj , C

a
j )}. Note that, all long jobs from I are tight, if no

long jobs arrive in the time period [Saj , C
a
j ). By the execution of algorithm H, we know that

H schedules these short jobs in σaj (I) under EDD strategy. Moreover, since all jobs in I have

kind release times, H is an optimal strategy for the job set Xj in [Saj ,∞). Suppose that there

exist some long jobs (say Jb1 , J
b
2 , ..., J

b
m ) in Xj . Since all jobs accepted by H are short jobs in

[Saj , C
a
j ), we know that U(t) is not a complete job set at any time t ∈ {r(Jb1), r(Jb2), ..., r(Jbm)}.

This means that if H schedules a long job at time t, then at least one short job will expire at

time t+ k. Note that, H still schedules these short jobs in σaj (I) under EDD strategy. Thus H

is also an optimal strategy for Xj in [Saj ,∞). By summing up the above analysis, we conclude

that the number of jobs accepted by any algorithm for Xj in [Saj ,∞) cannot be larger than

|σaj (I)|. For convenience, we say algorithm H is locally optimal for job set Xj during the time

interval [Saj ,∞). Then we have the following two lemmas.

Lemma 3.1.
⋃

0≤j≤m σ
a
j (I) 6= ∅ and

⋃
0≤j≤m σ

b
j(I) 6= ∅.
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Proof. If
⋃

0≤j≤m σ
a
j (I) = ∅ , and by algorithm H, instance I only contains one sort of jobs

(short jobs or long jobs). This contradicts Observation 3.1. If
⋃

0≤j≤m σ
b
j(I) = ∅, then σ(I) is

just a small block of itself. So, H is locally optimal for I in [C0,∞). Consequently, OPT(I) ≤
|σ(I)| = H(I). This contradicts the choice of I.

Lemma 3.2. I \ σ(I) does not contain long jobs.

Proof. Suppose that there is a long job (say Jb) in I \σ(I). Since all long jobs are tight and at

most one long job is released at one time point, r(Jb) must be equal to the starting time of a

short job in H. If Jb is not accepted by OPT, then remove Jb from I without changing the value

H(I) and OPT(I). Consequently, we can obtain a smaller counterexample, a contradiction.

Suppose that OPT accepts Jb at time r(Jb). Note that, U(r(Jb)) is not a complete job set at

time r(Jb), i.e., EDD strategy cannot accept all jobs in U(r(Jb)). This means that at least one

short job from U(r(Jb)) cannot be accepted by OPT after time r(Jb) + k. Since all jobs with

kind release times, all short jobs in U(r(Jb)) with release times equal to or less than r(Jb).

Suppose Ja ∈ U(r(Jb)) is not accepted by OPT, then we can construct a new optimal schedule

by removing Jb from I and scheduling Ja at time r(Jb). Since H(I \ {Jb}) = H(I), the new

instance I \ {Jb} is a smaller counterexample, a contradiction.

By Lemma 3.1, we can see that σ(I) contains both big blocks and small blocks. Set aj =

|σaj (I)| and bj = |σbj(I)|, where j = 0, 1, ...,m. Then H(I) = α + β =
∑

0≤j≤m(aj + bj). Since

all jobs in σ(I) have been completed by H at time CI and by Observation 3.2, all jobs from

I \ σ(I) expire at time CI and [C0, CI) = (∪0≤j≤m[Sbj , C
b
j ))

⋃
(∪0≤j≤m[Saj , C

a
j )).

For each 0 ≤ j ≤ m, we define the job sets Qj = {Ja ∈ σaj (I) : r(Ja) < Saj } ∪ {Ja ∈
I \ σ(I) : r(Ja) < Saj and d(Ja) ∈ [Saj + 1, Caj + 1)} and Rj = {Ja ∈ σaj (I) : r(Ja) ≥
Saj } ∪ {Ja ∈ I \ σ(I) : r(Ja) ≥ Saj and d(Ja) ∈ [Saj + 1, Caj + 1)}. Then (Qj ∪ Rj) ⊂ Xj . By

Observation 3.3,
⋃

0≤j≤m(Qj ∪Rj) contains all the short jobs from I. Let π1 and π2 denote the

optimal schedules for Qj and Rj , respectively. And let u∗j and v∗j denote the number of jobs

accepted by π1 and π2 for Qj and Rj , respectively. Then we have the following lemma.

Lemma 3.3. u∗j ≤ aj and v∗j ≤ aj, 0 ≤ j ≤ m.

Proof. We first prove that u∗j ≤ aj for 0 ≤ j ≤ m. Let π1(Qj) denote the set of jobs accepted

in π1 for Qj and Jb denote the last long job in σbj(I). Then |π1(Qj)| = u∗j and c(Jb) = Saj . For

any job Ja ∈ Qj , by the definition of Qj , we have r(Ja) < Saj . Since all jobs have kind release

times, we have r(Ja) ≤ s(Jb). So, all jobs from Qj are unscheduled effective jobs available

at time s(Jb) in H. Namely, π1(Qj) ⊆ Qj ⊆ U(s(Jb)). Note that H picks Jb to start at time

s(Jb). This implies that U(s(Jb)) is a complete job set at time s(Jb). So all jobs in π1(Qj) can

be processed on time in [Saj ,∞) under EDD ruler. Set X = σaj (I) ∪ {Ja ∈ I \ σ(I) : d(Ja) ∈
[Saj + 1, Caj + 1)} ∪ {Jb ∈ I : r(Jb) ∈ [Saj , C

a
j )}. Then π1(Qj) ⊆ Qj ⊆ Xj . Since H is locally

optimal in [Saj ,∞), the number of jobs accepted by OPT for Xj in [Saj ,∞) cannot be larger

than |σaj (I)| = aj . Hence, we have u∗j ≤ aj .
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By the definition of Rj , all jobs in Rj ⊆ Xj
released at (or after) time Saj . Since H is locally

optimal for Xj in [Saj ,∞), we have v∗j ≤ aj . The result holds.

For each (Qj ∪ Rj) ⊂ Xj with 0 ≤ j ≤ m, since H is locally optimal for Xj in [Saj ,∞),

we can obtain that the number of jobs accepted by OPT for Qj ∪ Rj in [Saj ,∞) cannot be

larger than aj . So, the number of short jobs from I accepted by OPT in the time period

[Sa0 , C
a
0 )∪ [Sa1 , C

a
1 )∪· · ·∪ [Sam−1, C

a
m−1)∪ [Sam,∞) cannot be larger than a0 +a1 + · · ·+am = α.

Moreover, for each time interval [Sbj , C
b
j ), since |σbj(I)| = bj and the length of short jobs is 1,

there are at most dbjke short jobs can be started by OPT in [Sbj , C
b
j ), j = 1, 2, ...,m.

Lemma 3.4. There are at most min{βdke, α} + α short jobs from I can be accepted by OPT

in [C0,∞).

Proof. If βdke > α, then min{βdke, α} + α = 2α. Note that
⋃

0≤j≤m(Qj ∪ Rj) contains all

the short jobs in I. By Lemma 3.3, we conclude that there are at most 2α short jobs accepted

by OPT in [C0,∞). Suppose that βdke ≤ α. For each 0 ≤ j ≤ m, since the number of

short jobs accepted by OPT in [Sbj , C
b
j ) cannot be larger than dbjke, and by the fact that∑

0≤j≤mdbjke ≤ dke
∑

0≤j≤m bj = βdke, there are at most βdke short jobs from I that can

be accepted by OPT in [C0, Cb0) ∪ [Sb1, C
b
1) ∪ · · · ∪ [Sbm, C

b
m). Moreover, the number of short

jobs accepted by OPT in [Sa0 , C
a
0 ) ∪ [Sa1 , C

a
1 ) ∪ · · · ∪ [Sam−1, C

a
m−1) ∪ [Sam,∞) cannot be larger

than α. So, the number of short jobs accepted by OPT in [C0,∞) cannot be larger than

βdke+ α = min{βdke, α}+ α. The result holds.

We distinguish the following two cases to prove that the smallest counterexample I does

not exist.

Case 1. βdke ≤ α. By Lemma 3.4, there are at most βdke + α short jobs accepted by

OPT in [C0,∞). Since all long jobs have tight deadline, by Lemma 3.3, and from the fact that,

the number of short jobs from I accepted by OPT in the time period [Sa0 , C
a
0 )∪ [Sa1 , C

a
1 )∪ · · · ∪

[Sam−1, C
a
m−1) ∪ [Sam,∞) cannot be larger than α, we have OPT(I) ≤ βdke + α. So, it follows

that
OPT(I)

H(I)
≤ βdke+ α

α+ β
≤ 2dke

1 + dke
= ρ,

where the last inequality holds since βdke ≤ α. This contradicts the fact that I is the smallest

counterexample.

Case 2. βdke > α. Let α∗ denote the number of short jobs from I accepted by OPT

in [C0,∞). By Claim Lemma 3.4, we have α∗ ≤ 2α. Since there are at most α short jobs

accepted by OPT in [Sa0 , C
a
0 ) ∪ [Sa1 , C

a
1 ) ∪ · · · ∪ [Sam−1, C

a
m−1) ∪ [Sam,∞), there are at least

α∗ − α short jobs needed to be scheduled in [RI , C
b
0) ∪ [Sb1, C

b
1) ∪ · · · ∪ [Sbm, C

b
m). Note that

the length of long jobs is k. Since all long jobs have tight deadlines, and by Lemma 3.3,

there are at most β − dα
∗−α
dke e long jobs that can be accepted by OPT for I. Consequently,

OPT(I) ≤ β − dα
∗−α
dke e+ α∗ ≤ β − (α∗ − α)/dke+ α∗. It follows that

OPT(I)

H(I)
≤ β − (α∗ − α)/dke+ α∗

α+ β
=
β + α/dke+ (1− 1/dke)α∗

α+ β
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≤ β + 2α− α/dke
α+ β

=
β/α+ 2− 1/dke

1 + β/α
<

2dke
dke+ 1

= ρ,

where the second inequality and the last inequality hold since α∗ ≤ 2α and βdke > α, respec-

tively. This still contradicts the fact that I is the smallest counterexample.

By summing up the above discussion, we conclude the main result of this section as follows.

Theorem 3.2. For problem 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
E(J), when all long jobs

are tight, H has a competitive ratio of 2dke/(dke+ 1).

It is easy to find an instance to prove that the bound 2dke/(dke+ 1) is tight. For example,

we construct a job sequence I with 2dke unit length jobs and one k length job. Let J1 =

{Jj : 0 ≤ j ≤ dke} denote the set of the first dke + 1 jobs, such that r(Jj) = 0, p(Jj) = 1,

d(Jj) = 2dke, j = 1, 2, ..., dke. In particular, when j = 0, suppose that p(J0) = d(J0) = k. Let

J2 = {J ′j : 1 ≤ j ≤ dke} denote the set of the other dke jobs, such that r(J ′j) = k, p(J ′j) = 1,

d(J ′j) = 2dke, j = 1, 2, ..., dke. Then H will accept dke short jobs from J1 ∪J2 and one long job

J0. While OPT will accept all short jobs in J1 ∪ J2. So, OPT(I)/H(I) = 2dke/(dke+ 1).

Remark 3.1. Note that 2dke/(dke+ 1) = 4/3 if 1 < k ≤ 2. Then by Theorem 3.1, algorithm

H is a best possible online algorithm for this problem.

§4 For the objective function:
∑

p(J)E(J)

In this section, we study the problems 1 | online,KRT, r(J) |
∑
p(J)E(J), 1 | online,KRT,

r(J), p(J) ∈ {1, k} |
∑
p(J)E(J), and 1 | online,KRT, r(J), p(J) ∈ {1, k} |

∑
p(J)E(J) under

the constraint that all the k length jobs are tight. When no confusion can occur, we use P1,

P2 and P3 to denote the above three problems, respectively.

4.1 The lower bounds

Here, we give a lower bound of max{4/(2 + k), 1} for P3, a lower bound of min{(1 +

k)/k, 2k/(1 + k)} for P2, and a lower bound of
√

2 for P1, respectively. By constructing the

same job instance as in Theorem 3.1 and using the similar proof scheme, we conclude the

following theorem.

Theorem 4.1. For problem P3, no online algorithms have a competitive ratio less than

max{4/(2 + k), 1}.

Theorem 4.2. For problem P1 and P2, no online algorithms have a competitive ratio less than√
2 and min{(1 + k)/k, 2k/(1 + k)}, respectively.

Proof. Set α = 1 +
√

2 (for P1), α = k (for P2). Consider an online algorithm A and the

following instance I presented by the adversary.

At time 0, there are two jobs J1 and J2 with p(J1) = 1 = d(J1), p(J2) = α, d(J2) = 1 + α

arrive. If algorithm A starts J1 at time 0, then jobs J3 with p(J3) = p(J2) = α, d(J3) = 2α
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arrives at time 1. Since algorithm A can only schedule one long job during the time interval

[1, 2α] by A, A(I) ≤ 1+α. Note that OPT can schedule two long jobs in [0, 2α]. It follows that

OPT(I)/A(I) ≥ 2α

1 + α
(= α− 1 =

√
2 for P1).

If algorithm A does not start J1 at time 0, then no other jobs will arrive, and so, A(I) ≤
p(J2) = α and OPT(I) = p(J1) + p(J2) = 1 + α. Hence,

OPT(I)/A(I) ≥ 1 + α

α
(= α− 1 =

√
2 for P1).

The result follows.

4.2 Online algorithm LEJ

In this subsection, we present an online algorithm LEJ (Longest Effective Jobs) for P1, P2

and P3. Let t be the current time. We use U(t) to denote the set of all unscheduled effective

jobs at time t. Online algorithm LEJ works as follows.

Algorithm LEJ: At any time t, if U(t) 6= ∅ and the machine is idle, then choose a job with

the longest processing time in U(t) (In case of ties, we first choose a job with the smallest

deadline, and then a job with the smallest release time if there is still a choice) and process

it on the machine; Otherwise do nothing and merely increment t.

4.3 Analysis

In this subsection, we show that the competitive ratio of LEJ for problems P1, P2 and P3

is %1 = 3, %2 = 1 + dke/k, and %3 = dke/k, respectively. Let Ii be a smallest counterexample

about Pi, i = 1, 2, 3. Then OPT(Ii) > %iLEJ(Ii). Let σi denote the schedule produced by LEJ

for instance Ii, i = 1, 2, 3.

By shifting, we may assume that the release time of the first job in Ii (i = 1, 2, 3) is 0. Let

S0 and C0 denote the starting time of the first job and the completion time of the last job in

σi, respectively. By LEJ, we have S0 = 0. For any job J ∈ Ii, we use s(J), s∗(J), c(J), c∗(J)

to denote the starting time and completion time of J in LEJ and OPT, respectively. Let σi(Ii)

be the set of jobs accepted by LEJ for Ii, i = 1, 2, 3. The following two observations are implied

in the implementation of algorithm LEJ.

Observation 4.1. All jobs in Ii \ σi(Ii) are expired at time C0, i = 1, 2, 3.

Observation 4.2. All jobs in σi(Ii) are processed contiguously by LEJ, i.e., there is no idle

time interval between [0, C0), i = 1, 2, 3.

If possible, let s∗ be the starting time of the last job (say J∗) from I1 \ σ1(I1) in OPT.

By Observation 4.1, we have s∗ < C0. So, OPT(I1 \ σ1(I1)) ≤ s∗ + p(J∗) < C0 + p(J∗). By

Observation 4.2, we have LEJ(I1) =
∑
J∈σ1(I1)

p(J) = C0. We use J ′ to denote the last job in

σ1. Then s(J ′) + p(J ′) = C0 = LEJ(I1). Since all jobs in I1 have kind release times, we have
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J ′, J∗ ∈ E(s(J ′)). By LEJ, p(J∗) ≤ p(J ′) ≤ C0. So, we have

OPT(I1) ≤ OPT(σ1(I1)) + OPT(I1 \ σ1(I1)) < LEJ(I1) + C0 + p(J∗)

≤ LEJ(I1) + C0 + C0 = 3LEJ(I1) = %1LEJ(I1).

This contradicts with the assumption that I1 is a counterexample of P1. So, we conclude the

following theorem.

Theorem 4.3. For problem 1 | online,KRT, r(J) |
∑
p(J)E(J), LEJ has a competitive ratio

of 3.

It is easy to find an instance to prove that the bound 3 is asymptotically tight. For example,

we construct a job instance I with three jobs as follows: r(J1) = r(J2) = r(J3) = 0; p(J1) =

1, p(J2) = 1− ε, p(J3) = 1 + ε; d(J1) = 1, d(J2) = 2− ε, d(J3) = 3, where ε is a sufficiently small

positive real number. Then LEJ will schedule J3 at time 0. While OPT can schedule J1, J2, J3

at time 0, 1, 2− ε, respectively. So, OPT(I)

LEJ(I)
= 3

1+ε → 3 as ε→ 0.

Next, we will analyze the competitive ratio of algorithm LEJ for P2 and P3. Some useful

notations and definitions presented in Section 3.3 will be adopted in the following discussion.

We refer to the length 1 jobs as short jobs, and the length k jobs as long jobs. Moreover, a

short job is indicated by Ja and a long job is indicated by Jb. Note that, σi is the schedule

produced by LEJ for the smallest counterexample Ii, i = 2, 3. Then we have the following two

observations.

Observation 4.3. Instance Ii must consist of short jobs and long jobs, i = 2, 3.

Proof. Assume that instance Ii only contains one kind jobs (short jobs or long jobs). Since all

jobs in I have kind release times and algorithm LEJ schedules jobs under EDD rule, LEJ is an

optimal algorithm for Ii. So, we have LEJ(Ii) = OPT(Ii). This contradicts the definition of

Ii.

Observation 4.4. All the long jobs from Ii are accepted by LEJ, i.e., Ii \ σ2(Ii) does not

contain long jobs, i = 2, 3.

Proof. Suppose that there is a long job (say J) in Ii \ σi(Ii). At any time point t, since

algorithm LEJ first chooses the long jobs in U(t) and schedules them under EDD ruler, and

from the fact that all jobs in Ii have kind release times, LEJ is an optimal strategy for the long

jobs of Ii. So, there must be a long job (say J ′) in σi(Ii) scheduled by LEJ during the time

interval [d(J) − k, d(J)). By LEJ and J, J ′ have kind release times, we have d(J ′) ≤ d(J) <

C0 + k and J, J ′ ∈ E(s(J ′)). Therefore, we can remove J ′ from Ii without changing the value

LEJ(Ii) and cannot decrease the offline optimal value. Consequently, we can obtain a smaller

counterexample, a contradiction.

Let a and b denote the number of short jobs and long jobs in σ2(I2), respectively. Then

we have LEJ(I2) =
∑
J∈σ2(I2)

p(J) = a + kb. By Observation 4.2 and the definition of C0, we

have C0 = bk + a. By Observation 4.4, all jobs in I2 \ σ2(I2) are short jobs, and since the fact
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that the length of short jobs is 1 and dbke + a ≥ bk + a = C0, at most dbke + a short jobs of

I2 \ σ2(I2) can be started in [0, C0). Moreover, by Observation 4.1, all short jobs in I2 \ σ2(I2)

expire at time C0. So, OPT(I2 \σ2(I2)) ≤ a+ dbke. By the fact that LEJ(I2) = a+ bk, we have

OPT(I2) ≤ OPT(σ2(I2)) + OPT(I2 \ σ2(I2)) ≤ LEJ(I2) + a+ dbke

≤ a+ bk + a+ dbke = (1 + a+dbke
a+bk )LEJ(I2)

≤ (1 + dke
k )LEJ(I2) = %2LEJ(I2).

This still contradicts the fact that I2 is the smallest counterexample of P2. Hence, we have the

following theorem.

Theorem 4.4. For problem 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
p(J)E(J), LEJ has a

competitive ratio of 1 + dke/k.

It is easy to find an instance to prove that the bound 1 + dke/k is tight. For example,

we construct a job sequence I with dke unit length jobs and one k length job. At time 0,

one k length job J∗ with d(J∗) = k + dke, and the other dke unit length jobs have the same

deadline of dke arrive. Then LEJ only accept J∗, while OPT will accept all jobs in I. Hence
OPT(I)

LEJ(I)
= k+dke

k = 1 + dke
k .

Let x and y denote the number of short jobs and long jobs in σ3(I3), respectively. For

convenience, we use σ(I3) to denote σ3(I3). Then we have LEJ(I3) =
∑
J∈σ(I3) p(J) = x+ yk.

By Observation 4.2, all jobs in σ(I3) are scheduled continuously. We divide the whole schedule

σ(I3) into two sorts of blocks, big blocks σbj(I3) and small blocks σaj (I3) with j = 0, 1, ..., n.

Then we have the following lemma.

Lemma 4.1. (i)
⋃

0≤j≤n σ
a
j (I3) 6= ∅ and

⋃
0≤j≤n σ

b
j(I3) 6= ∅; (ii) σb0(I3) 6= ∅; (iii) n = 0, i.e.,

σ(I3) = σb0(I3)
⋃
σa0 (I3).

Proof. We first prove statement (i). If
⋃

0≤j≤n σ
b
j(I3) = ∅, then by algorithm LEJ, instance

I3 contains only short jobs. This contradicts Observation 4.3. If
⋃

0≤j≤n σ
a
j (I3) = ∅, then all

jobs accepted by H for I3 are long jobs. By Observation 4.2, we have LEJ(I3) = yk = C0. By

Observation 4.1 and all long jobs of I3 have kind release times, at most dyke short jobs can be

started by OPT in [0, C0). So, we have OPT(I3) ≤ dyke. It follows that OPT(I3)/LEJ(I3) ≤
dyke/yk ≤ dke/k = %3. This contradicts the choice of I3. Statement (i) follows.

For statement (ii), suppose to the contrary that σb0(I3) = ∅. Set W = U(Ca0 ) ∪ {J ∈
I3 : r(J) > Ca0 }. Note that, all unscheduled jobs in I3 \ W by LEJ expire at time Ca0 .

Let π be an optimal schedule of instance I3. Since all jobs in I3 have kind release times,

the jobs from U(Ca0 ) are released at time Ca0 or with release times less than Ca0 − 1. Set

U∗(Ca0 ) = {J ∈ U(Ca0 ) : r(J) ≤ Ca0 −1}. Since all long jobs in I3 are tight and by the definition

of U∗(Ca0 ), all jobs from U∗(Ca0 ) are short jobs. Let C∗π denote the completion time of the last

job in π accepted before time Ca0 . Since all jobs in σ3(I3) scheduled before time Ca0 are short

jobs and by LEJ, no long jobs arrive before time Ca0 . So, we have C∗π < Ca0 + 1. We define two

smaller job instances V ∗ and W ∗ by the following way.
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Instance V ∗ consists of the jobs in I3 \W and the jobs in U∗(Ca0 ) with the deadlines of jobs

Ja ∈ U∗(Ca0 ) being revised by d∗(Ja) = C∗π. Note that, in instance V ∗, all jobs in U∗(Ca0 ) expire

at time Ca0 since C∗π < Ca0 + 1. Furthermore, algorithm LEJ accepts the same number of short

jobs in time interval [0, Ca0 ) for both instances I3 and V ∗. So, we have LEJ(V ∗) = |σa0 (I3)|.
Instance W ∗ consists of the jobs in U(Ca0 ) ∪ {J : r(J) > Ca0 } with the release dates of jobs

J ∈ U(Ca0 ) being revised by r∗(J) = Ca0 . Note that all jobs in W ∗ have release dates at least

Ca0 . Furthermore, algorithm LEJ generates the same schedule in time interval [Ca0 ,∞) for both

instances I3 and W ∗. So, we have LEJ(W ∗) = x+ yk − |σa0 (I3)|.
By the definition of V ∗ and W ∗, we can see that LEJ accepts the same total processing

time of jobs for I3 and V ∗ ∪W ∗. Then we have LEJ(V ∗ ∪W ∗) = LEJ(I3). Furthermore, the

schedules π(V ∗) and π(W ∗) obtained from π by restricting π on the jobs accepted in [0, Ca0 )

and [Ca0 ,∞), respectively, can be regarded as feasible schedules of V ∗ and W ∗, respectively.

So, OPT(I3) ≤ OPT(V ∗) + OPT(W ∗). By the choice of I3, we have OPT(V ∗) ≤ %3LEJ(V ∗)

and OPT(W ∗) ≤ %3H(W ∗). Thus, we have

OPT(I3) ≤ OPT(V ∗)+OPT(W ∗) ≤ %3(LEJ(V ∗)+LEJ(W ∗)) = %3LEJ(V ∗∪W ∗) = %3LEJ(I3).

This contradicts with the assumption that I3 is a counterexample of P3.

If n = 0, by Statements (i) and (ii), we have σ(I3) = σb0(I3)
⋃
σa0 (I3). Assume that n ≥ 1.

Set W ′ = U(Ca0 )∪{J ∈ I3 : r(J) > Ca0 }. Set U∗(Ca0 ) = {J ∈ U(Ca0 ) : r(J) ≤ Ca0 −1}. Since all

long jobs in I3 are tight, and by Observation 4.4, all jobs from U∗(Ca0 ) are short jobs. Note that

all long jobs in σb0(I3) with release times less than Cb0−k and they are all tight jobs. These long

jobs form σb0(I3) cannot be started after time Cb0 − k in any optimal schedule. So, for each long

job Jb with r(Jb) < Ca0 , c∗(Jb) ≤ Cb0 < Ca0 < Ca0 + 1; For each short job Ja with r(Ja) < Ca0 ,

c∗(Ja) < Ca0 + 1. Consequently, we have C∗π < Ca0 + 1, where C∗π denote the completion time

of the last job in π (optimal schedule) accepted before time Ca0 . Using the same proof scheme

as in Statement (ii), we can prove that Statement (iii) is correct.

Lemma 4.1 (iii) implies that all long jobs are scheduled before short jobs in LEJ, i.e., Cb0 = Sa0
and Ca0 = C0. Set X = σa0 (I3)∪ (I3 \σ(I3)). By Observation 4.4, all jobs from X are short jobs.

From the execution of algorithm LEJ, we know that LEJ schedules these short jobs in σa0 (I3)

under EDD strategy. Since all jobs in I3 have kind release times, LEJ is an optimal strategy for

the job set X in the time interval [Sa0 ,∞). So, the number of jobs accepted by OPT in [Sa0 ,∞)

cannot be larger than |σa0 (I3)| = x. Recall that |σb0(I3)| = y and the length of short jobs is 1.

Thus at most dyke short jobs can be started by OPT in [0, Sa0 ). So, OPT(I3) ≤ x + dyke. By

the fact that LEJ(I3) = x+ yk, we have

OPT(I3)

LEJ(I3)
≤ x+ dyke

x+ yk
≤ dke

k
= %3.

This contradicts with the assumption that I3 is a counterexample of P3. Hence, we conclude

the following theorem.

Theorem 4.5. For problem 1 | online,KRT, r(J), p(J) ∈ {1, k} |
∑
p(J)E(J), when all long

jobs are tight, LEJ has a competitive ratio of dke/k.
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Remark 4.1. Note that dke/k = 1 if k is any positive integer. Then by Theorem 4.1, algorithm

LEJ is an optimal online algorithm for P3.
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