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Sharp upper bounds for the adjacency and the signless

Laplacian spectral radius of graphs

WU Xian-zhang1,2 LIU Jian-ping1,3,∗

Abstract. Let G be a simple graph with n vertices and m edges. In this paper, we present

some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs

in which every pair of adjacent vertices has at least one common adjacent vertex. Our results

improve some known upper bounds. The main tool we use here is the Lagrange identity.

§1 Introduction

Let G = (V,E) be a connected graph with vertex set V = {v1, v2, · · · , vn} and edge set

E = {e1, e2, · · · , em}. If vi is adjacent to vj , then we denote it by vi ∼ vj . Let di = d(vi) be

the degree of a vertex vi in G, for i = 1, 2, . . . , n. Let ∆(G) = ∆, δ(G) = δ be the maximum

degree and minimum degree of the vertices of G, respectively. If necessary, we assume that

∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ. Let D(G) = diag(d1, d2, · · · , dn) be the diagonal matrix of

vertex degrees of G. The adjacency matrix of a graph G is A(G) = (aij)n×n, where elements

aij = 1 if vi ∼ vj , and aij = 0 otherwise. The signless Laplacian matrix of G is defined

to be Q(G) = D(G) + A(G). Since both Q(G) and A(G) are real symmetric matrices, their

eigenvalues are all real numbers. The largest eigenvalues of A(G) and Q(G), denoted by λ(G)

and µ(G) (abbreviated as λ and µ), are called the adjacency spectral radius and the signless

Laplacian spectral radius of G, respectively. The average 2-degree of vertex vi is defined as

mi = m(vi) =

∑
vj∼vi

d(vj)

d(vi)
, abbreviated as dimi =

∑
j∼i

dj .

A graph G is called a triangulation [1], if every pair of adjacent vertices of G has at least

one common adjacent vertex. Undefined terminology and notation may refer to [2].
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Spectral graph theory is a fast growing branch of algebraic graph theory and it concerns

an interwind tale of properties of graphs and spectrum of related matrices. The most studied

problems within spectral graph theory are those lower and upper bounds for the spectral radius,

Laplacian spectral radius and signless Laplacian spectral radius, as well as the characterization

of extremal graphs achieving the bounds. There exist a lot of papers on this topic. Some recent

results related to the theory of graph spectra may be found in [1, 3–23]. In this paper, we

firstly review some classical upper bounds for the adjacency and the signless Laplacian spectral

radius of graphs. Then we present some new sharp upper bounds for the spectral radius and

the signless Laplacian spectral radius of graphs, which improve some known results listed in

section 2.

§2 Some known sharp upper bounds for the adjacency and the

signless Laplacian spectral radius of graphs

Some known sharp upper bounds for the adjacency and the signless Laplacian spectral radius

of graphs are summarized in this section.

We start with a few sharp upper bounds for the adjacency spectral radius of graphs.

Hong [3] gave the following bound

λ ≤
√

2m− n+ 1. (2− 1)

Das and Kumar [4] showed that

λ ≤
√

2m− (n− 1)δ + (δ − 1)∆. (2− 2)

Stanley [5] obtained the following bound

λ ≤ −1 +
√

8m+ 1

2
. (2− 3)

Hu [6] presented the bound as follows:

λ ≤
√

2m− n− δ + 2. (2− 4)

Shu and Wu [7] showed that

λ ≤
di − 1 +

√
(di + 1)2 + 4(i− 1)(d1 − di)

2
. (2− 5)

Liu and Weng [8] showed the bound

λ ≤
di − 1 +

√
(di + 1)2 + 4

i−1∑
j=1

(dj − di)

2
. (2− 6)

Oliveira et al. [9] showed that

µ ≤ max
1≤i≤n

{di +
√
d2
i + 8dimi

2

}
, (2− 7)

and

µ ≤ max
1≤i≤n

{
di +

√
dimi

}
. (2− 8)
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Chen and Wang [10] obtained the following bound

µ ≤ (δ − 1)2 + 8[2m+ ∆2 − (n− 1)δ]

2
. (2− 9)

Maden et al. [11] showed that

µ ≤ max
vi∼vj

{di + 2dj − 1 +
√

(di + 2dj − 1)2 + 4di
2

}
. (2− 10)

Li and Pan [12] gave the following bound

µ ≤
∆ + δ − 1 +

√
(∆ + δ − 1)2 + 8[2m− (n− 1)δ]

2
. (2− 11)

Li and Pan [13] presented the following bound

µ ≤ max
1≤i≤n

{√
2di(di +mi)

}
. (2− 12)

Fan and Weng [14] gave the following bound

µ ≤ ∆− s

4
+

√
(∆− s

4
)2 + (1 + t)∆ + s(n− 1)−∆2, (2− 13)

where t (resp. s) denotes the maximum number of common neighbors of a pair of adjacent

vertices (resp. nonadjacent distinct vertices) of G.

Su et al. [15] gave the bound that

µ ≤ min
1≤i≤n

{d1 + 2di − 1 +
√

(2di − d1 + 1)2 + 8(i− 1)(d1 − di)
2

}
. (2− 14)

Cui et al. [16] showed that

µ ≤ min
1≤i≤n

{d1 + 2di − 1 +

√
(2di − d1 + 1)2 + 8

i−1∑
k=1

(dk − di)

2

}
. (2− 15)

§3 New sharp upper bounds for the adjacency and the signless

Laplacian spectral radius of graphs

Throughout this section, let G be a simple graph with n vertices and m edges and Kn be a

complete graph with n vertices. Recall that the line graph GL of a graph G is the graph whose

vertices are the edges of G, with two vertices in GL adjacent whenever the corresponding edges

in G have exactly one vertex in common. Observe that every edge eij ∈ E(G) corresponding to

a vertex vij ∈ V (GL). Let dij = dij(G
L), mij = mij(G

L) be the degree and average 2-degree

of vertex vij in GL.

Now, we will establish some new sharp upper bounds for the adjacency and the signless

Laplacian spectral radius of graphs in terms of di,mi,∆, δ.

Lemma 3.1. ( [1], Lemma 2.1) Let G be a simple graph with n vertices and m edges, and

∆, δ be the maximum and minimum degree of G, respectively. Then

dimi ≤ 2m− (n− 1)δ + (δ − 1)∆.
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Lemma 3.2. ( [17], Lemma 3.1) Let G be a simple graph and GL be its line graph, then

µ(G) = 2 + λ(GL),

where µ(G) and λ(GL) are spectral radius of Q(G) and A(GL), respectively.

Let us recall the famous Lagrange’s identity.

Lemma 3.3. Let n be positive integer, a1, a2, · · · , an, b1, b2, · · · , bn be real numbers. Then

(
n∑
j=1

a2
j )(

n∑
j=1

b2j ) = (
n∑
j=1

ajbj)
2 +

∑
1≤j<k≤n

(ajbk − akbj)2.

Lemma 3.4. ( [17] Theorem 3.2) Let G be a simple graph, di, mi be the degree and average

2-degree of vertex vi in G. Then dij(G
L) = di + dj − 2 and

mij(G
L) =

di(di +mi − 4) + dj(dj +mj − 4) + 4

di + dj − 2
.

Theorem 3.1. Let G be a triangulation with n vertices and m edges, A = (aij)n×n be its

adjacency matrix, and λ be the largest eigenvalue. Then

λ(G) ≤ max
1≤i≤n

{1 +
√

4dimi − 4di + 1

2

}
.

Moreover, if any two adjacent vertices of G have exactly one common adjacent vertex, and

xk = xj for any i, j, k ∈ {1, 2, . . . , n} satisfying j < k, aij = aik = 1, ajk = 0, then equality

holds if and only if for each i, dimi − di = k, where k is a positive integer. Especially if

G ∼= K3, then equality holds.

Proof. Since A is an irreducible nonnegative matrix, by the famous Perron-Frobenius

Theorem, the largest eigenvalue λ is simple and there exists a unique positive unit eigenvector

X = (x1, x2, · · · , xn)T corresponding to λ.

Clearly, XTX = x2
1 + x2

2 + · · ·+ x2
n = 1. Then, from λX = AX it follows that

λ = λXTX = XTAX =

n∑
i=1

n∑
j=1

aijxixj .

Since A is symmetric matrix, we get∑
1≤i<j≤n

aij(xi − xj)2 =
n∑
i=1

dix
2
i − 2

∑
1≤i<j≤n

aijxixj =
n∑
i=1

dix
2
i −

n∑
i=1

n∑
j=1

aijxixj .

That is, ∑
1≤i<j≤n

aij(xi − xj)2 =

n∑
i=1

dix
2
i − λ. (1)
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For each i, we have Axi =
n∑
j=1

aijxj = λxi. Thus we have

λ2x2
i = (

n∑
j=1

aijxj)
2.

Let aj =
√
aij , bj =

√
aijxj . By Lemma 3.3, we have

λ2x2
i = (

n∑
j=1

aijxj)
2 = (

n∑
j=1

aij)(

n∑
j=1

aijx
2
j )−

∑
1≤j<k≤n

(
√
aij
√
aikxk −

√
aik
√
aijxj)

2

= di

n∑
j=1

aijx
2
j −

∑
1≤j<k≤n

(
√
aij
√
aikxk −

√
aik
√
aijxj)

2

= di

n∑
j=1

aijx
2
j −

∑
1≤j<k≤n

[(
√
aij
√
aik(xk − xj)]2

= di

n∑
j=1

aijx
2
j −

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2.

Summing over all i, we obtain

n∑
i=1

λ2x2
i =

n∑
i=1

di

n∑
j=1

aijx
2
j −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2

=

n∑
i=1

n∑
j=1

aijdix
2
j −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2

=

n∑
j=1

∑
j∼i

dix
2
j −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2

=

n∑
j=1

djmjx
2
j −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2

=

n∑
i=1

dimix
2
i −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2.

Noting that G is a triangulation, we have

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2 ≥
n∑
i=1

∑
1≤j<k≤n

aij=aik=1,ajk=1

(xk − xj)2

≥
∑

1≤j<k≤n
ajk=1

(xk − xj)2 =
∑

1≤j<k≤n

ajk(xk − xj)2. (2)

The first equality in (2) holds if and only if xk = xj , for any i, j, k ∈ {1, 2, . . . , n} satisfying

j < k, aij = aik = 1, and ajk = 0. The second equality in (2) holds if and only if any two
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adjacent vertices of G have exactly one common adjacent vertex, or xk = xj for any adjacent

vertices (vj , vk) with more than one common adjacent vertex.

From (1) and (2), we have

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2 ≥
n∑
j=1

djx
2
j − λ.

Thus, we have

n∑
i=1

λ2x2
i =

n∑
i=1

dimix
2
i −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2

≤
n∑
i=1

dimix
2
i −

n∑
j=1

djx
2
j + λ.

This yields the following relations

n∑
i=1

(λ2 − λ+ di − dimi)x
2
i ≤ 0.

Then there must exist i ∈ {1, 2, . . . , n} such that λ2 − λ+ di − dimi ≤ 0. Equality holds if and

only if dimi − di = λ2 − λ be a positive integer.

This implies that

λ ≤ 1 +
√

4dimi − 4di + 1

2
.

Thus, we have

λ ≤ max
1≤i≤n

{1 +
√

4dimi − 4di + 1

2

}
.

It follows from the above proof that if any two adjacent vertices of G have exactly one

common adjacent vertex, and xk = xj for any i, j, k ∈ {1, 2, . . . , n} satisfying j < k, aij = aik =

1, ajk = 0, then equality holds if and only if for each i, dimi − di = k, where k is a positive

integer. Especially if G ∼= K3, then equality holds in Theorem 3.1.

Remark 3.1. If G is regular of degree r, then dimi − di = r2 − r for all i ∈ {1, 2, . . . , n}. We

assert that there exist some non-regular graphs that satisfy dimi − di = k for all i (see Fig.1).
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By direct calculations, dimi − di = 2t for the graph Bt with n = 2t + 1, (t = 2, 3, · · · ) for all

i ∈ {1, 2, . . . , n}.

Remark 3.2. Two graphs G1 and G2 (see Fig.2) are presented to illustrate that the upper

bound in Theorem 3.1 is better than the bounds in [3–7] in some cases. Furthermore, it can

be observed from Table 1 that our bound in Theorem 3.1 is very close to λ.

Table 1: The value of some classic upper bounds for the above two graphs

λ Theorem 3.1 (2-1) (2-2) (2-3) (2-4) (2-5) (2-6)

G1 4.7990 5.1098 5.3852 5.1962 5.5208 5.1962 5.4641 5.0000

G2 2.9354 3.0000 3.1623 3.1623 3.2749 3.0000 3.2361 3.0000

From Table 1, we see the bound in Theorem 3.1 is the best in the above mentioned upper

bounds (2-1)–(2-5) for G1 and G2. But the upper bound 5.0000 in (2-6) which is better than

the upper bound 5.1098 obtained from Theorem 3.1 for G1, and the upper bound 3.0000 in

(2-6) which is the same as the one obtained from Theorem 3.1 for G2.

Corollary 3.1. Let G be a triangulation with n vertices and m edges, then

λ ≤
1 +

√
4[2m− (n− 1)δ + (δ − 1)∆]− 4δ + 1

2
,

where λ is the spectral radius of G, with equality holds if G ∼= K3.

Proof. By Lemma 3.1 and Theorem 3.1, we have
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λ ≤ max
1≤i≤n

{
1+
√

4[2m−(n−1)δ+(δ−1)∆]−4di+1

2

}
.

Thus, we obtain

λ ≤
1 +

√
4[2m− (n− 1)δ + (δ − 1)∆]− 4δ + 1

2
.

By direct calculations, equality holds if G ∼= K3.

Lemma 3.5. If G is a triangulation, then its line graph GL is also a triangulation.

Proof. Suppose that GL is not a triangulation, then there exist two adjacent vertices vxy, vxz ∈
V (GL), which have no common adjacent vertex, i.e., no edges are adjacent to both two edges

xy and xz in G. Hence, G has no subgraphs H1, H2 as follows (see Fig.3). Then, the vertice x

and y in G have no common adjacent vertex, a contradiction.

Corollary 3.2. Let G be a triangulation, µ be its signless Laplacian spectral radius. Then

µ ≤ 2 + max
vi∼vj

{1 +
√

4d2
i + 4dimi + 4d2

j + 4djmj − 20di − 20dj + 25

2

}
,

with equality holds if G ∼= K3.

Proof. Let GL be the line graph of G. By Lemma 3.4, for any vij ∈ V (GL) we have

dij(G
L) = di + dj − 2 and mij(G

L) =
di(di+mi−4)+dj(dj+mj−4)+4

di+dj−2 .

By Lemma 3.5, the line graph of triangulation is also a triangulation. Using Lemma 3.2 and

Theorem 3.1, we have

µ ≤ 2 + max
vi∼vj

{1 +
√

4d2
i + 4dimi + 4d2

j + 4djmj − 20di − 20dj + 25

2

}
.

If G ∼= K3, it is easy to check that equality holds.
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Remark 3.3. The upper bound in Corollary 3.2 is better than the upper bounds for the

signless Laplacian spectral radius in [9–14] in some cases. Three graphs G3, G4 and G5 are

given as follows.

Table 2: The value of some classic upper bounds for the above three examples

µ Corollary 3.2 (2-7) (2-8) (2-9) (2-10) (2-11) (2-12) (2-13)

G3 5.5616 5.7016 6.4721 6.8284 6.8443 7.3723 6.2749 6.9282 6.9211

G4 5.2361 5.3723 5.5311 5.6458 5.6235 6.0000 5.4641 5.6569 6.0000

G5 11.4784 12.2596 13.3066 14.6904 16.0000 19.1853 13.8815 25.2982 17.1322

From Table 2, we see that the bound in Corollary 3.2 is the best in the above men-

tioned upper bounds (2-7)–(2-13) for G3, G4 and G5. But both bounds in (2-14) and (2-

15) are sharp for G3, G4, and 13.0000, 13.0000 for G5. Moreover, by applying the upper

bounds in (2-6) plus two with i = 5, 2, 5 to the line graphs of G3, G4, G5 (degree sequence

(4, 4, 4, 4, 2, 2), (4, 3, 3, 3, 3), (114, 1016, 41, 28)), respectively, we can find the upper bound of µ

are 5.7016, 5.2361, 12.3523, that the second one is better than the upper bounds 5.3723, the

first one is the same as 5.7016, the last one is larger than the upper bound 12.2596 obtained

from Corollary 3.2, respectively.

Corollary 3.3. Let G be a triangulation with n vertices and m edges, and GL be its line

graph with nL vertices and mL edges. Then

µ(G) ≤ 2 +
1 +

√
4[2mL − (m− 1)δL + (δL − 1)∆L]− 4δL + 1

2
,

where ∆L = max
vi∼vj

{
di + dj − 2

}
, δL = min

vi∼vj

{
di + dj − 2

}
are the maximum and minimum

degrees of the vertices of GL, respectively, with equality holds if G ∼= K3.
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Proof. Let GL be the line graph of G. We note from the definition of line graph, nL = m and

mL =

∑
vi∼vj

(di+dj−2)

2 be the number of vertices and edges of GL, respectively. By Corollary 3.1,

we have

λ(GL) ≤
1 +

√
4[2mL − (m− 1)δL + (δL − 1)∆L]− 4δL + 1

2
.

By Lemma 3.2, we obtain

µ ≤ 2 +
1 +

√
4[2mL − (m− 1)δL + (δL − 1)∆L]− 4δL + 1

2
.

It is straightforward to verify that if equality holds, the line graph of G must be K3. This

implies that G is K3.

Theorem 3.2. Let G be a triangulation with n vertices and m edges. If each edge of G at

least belongs to t (t ≥ 1) triangles, then

λ ≤ max
1≤i≤n

{ t+
√

4dimi − 4tdi + t2

2

}
.

Moreover, if any two adjacent vertices of G have exactly t common adjacent vertices, and

xk = xj for any i, j, k ∈ {1, 2, . . . , n} satisfying j < k, aij = aik = 1, ajk = 0, then equality

holds if and only if for each i, dimi − di = k, where k is a positive integer. Especially if

G ∼= Kt+2, then equality holds.

Proof. By Theorem 3.1, if each edge of G at least belongs to t (t ≥ 1) triangles, we have

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2 ≥
n∑
i=1

∑
1≤j<k≤n

aij=aik=1,ajk=1

(xk − xj)2

≥ t
∑

1≤j<k≤n
ajk=1

(xk − xj)2 = t
∑

1≤j<k≤n

ajk(xk − xj)2 (3)

and

n∑
i=1

λ2x2
i =

n∑
i=1

dimix
2
i −

n∑
i=1

∑
1≤j<k≤n
aij=aik=1

(xk − xj)2

≤
n∑
i=1

dimix
2
i − t

n∑
j=1

djx
2
j + tλ.

The first equality in (3) holds if and only if xk = xj , for any i, j, k ∈ {1, 2, . . . , n} satisfying

j < k, aij = aik = 1, and ajk = 0. The second equality in (3) holds if and only if any two

adjacent vertices of G have exactly t common adjacent vertices, or xk = xj for any adjacent

vertices (vj , vk) with more than t common adjacent vertices.

Thus, we get
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n∑
i=1

(λ2 − tλ+ tdi − dimi)x
2
i ≤ 0.

Then there must exists i ∈ {1, 2, . . . , n} such that

λ2 − tλ+ tdi − dimi ≤ 0.

This implies that

λ ≤ t+
√

4dimi − 4tdi + t2

2
.

Hence,

λ ≤ max
1≤i≤n

{ t+
√

4dimi − 4tdi + t2

2

}
.

Similarly with the proof of Theorem 3.1, if any two adjacent vertices of G have exactly t

common adjacent vertices, and xk = xj for any i, j, k ∈ {1, 2, . . . , n} satisfying j < k, aij =

aik = 1, ajk = 0, then equality holds if and only if for each i, dimi − di = k, where k is a

positive integer. Especially if G ∼= Kt+2, then equality holds.

Corollary 3.4. Let G be a triangulation with n vertices and m edges. If each edge of G at

least belongs to t(t ≥ 1) triangles, then

µ ≤ 2 + max
vi∼vj

{ t+
√

4d2
i + 4dimi + 4d2

j + 4djmj − (16 + 4t)di − (16 + 4t)dj + 16 + 8t+ t2

2

}
,

where µ is the signless Laplacian spectral radius.

Proof. Let GL be the line graph of G. Noting that to every triangle in G, there corresponds a

triangle in GL. It follows that each edge of GL also at least belongs to t triangles. By

Theorem 3.2 and Lemma 3.4, we have

λ(GL) ≤ max
vij∈V (GL)

{ t+
√

4dijmij − 4tdij + t2

2

}
.

Recall that,

dij(G
L) = di + dj − 2,mij(G

L) =
di(di +mi − 4) + dj(dj +mj − 4) + 4

di + dj − 2
.

Therefore,
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λ(GL) ≤ max
vi∼vj

{ t+
√

4d2
i + 4dimi + 4d2

j + 4djmj − (16 + 4t)di − (16 + 4t)dj + 16 + 8t+ t2

2

}
.

Thus, by Lemma 3.2, we have

µ ≤ 2 + max
vi∼vj

{ t+
√

4d2
i + 4dimi + 4d2

j + 4djmj − (16 + 4t)di − (16 + 4t)dj + 16 + 8t+ t2

2

}
.
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