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Sharp upper bounds for the adjacency and the signless

Laplacian spectral radius of graphs

WU Xian-zhang!? LIU Jian-ping!:3*

Abstract. Let G be a simple graph with n vertices and m edges. In this paper, we present
some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
in which every pair of adjacent vertices has at least one common adjacent vertex. Our results

improve some known upper bounds. The main tool we use here is the Lagrange identity.

81 Introduction

Let G = (V, E) be a connected graph with vertex set V' = {vy,va, -+ ,v,} and edge set
E = {ei, ez, - ,en}. If v; is adjacent to v;, then we denote it by v; ~ v;. Let d; = d(v;) be
the degree of a vertex v; in G, for i = 1,2,...,n. Let A(G) = A,d(G) = 0 be the maximum
degree and minimum degree of the vertices of G, respectively. If necessary, we assume that
A=d >dy > - >d, =0. Let D(G) = diag(dy,ds,--- ,d,) be the diagonal matrix of
vertex degrees of G. The adjacency matrix of a graph G is A(G) = (a;j)nxn, Where elements
ai; = 1if v; ~ v;, and a;; = 0 otherwise. The signless Laplacian matrix of G is defined
to be Q(G) = D(G) + A(G). Since both Q(G) and A(G) are real symmetric matrices, their
eigenvalues are all real numbers. The largest eigenvalues of A(G) and Q(G), denoted by A(G)
and u(G) (abbreviated as A and ), are called the adjacency spectral radius and the signless
Laplacian spectr;l zz(zdi)us of G, respectively. The average 2-degree of vertex v; is defined as
m; = m(v;) = %, abbreviated as d;ym; = Z d;.

A graph G is called a triangulation [1], if evéry pair of adjacent vertices of G has at least

one common adjacent vertex. Undefined terminology and notation may refer to [2].
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Spectral graph theory is a fast growing branch of algebraic graph theory and it concerns
an interwind tale of properties of graphs and spectrum of related matrices. The most studied
problems within spectral graph theory are those lower and upper bounds for the spectral radius,
Laplacian spectral radius and signless Laplacian spectral radius, as well as the characterization
of extremal graphs achieving the bounds. There exist a lot of papers on this topic. Some recent
results related to the theory of graph spectra may be found in [1,3-23]. In this paper, we
firstly review some classical upper bounds for the adjacency and the signless Laplacian spectral
radius of graphs. Then we present some new sharp upper bounds for the spectral radius and
the signless Laplacian spectral radius of graphs, which improve some known results listed in

section 2.

82 Some known sharp upper bounds for the adjacency and the
signless Laplacian spectral radius of graphs

Some known sharp upper bounds for the adjacency and the signless Laplacian spectral radius
of graphs are summarized in this section.

We start with a few sharp upper bounds for the adjacency spectral radius of graphs.

Hong [3] gave the following bound

A<V2m—n+1. (2-1)
Das and Kumar [4] showed that
A<V2m— (n—1)0+ (6 — 1A. (2-2)
Stanley [5] obtained the following bound

-1+ 1
A< % (2-13)
Hu [6] presented the bound as follows:
2m—n—0+ 2. (2-4)
Shu and Wu [7] showed that
d; — 1 d; +1)24+4(i —1)(dy — d;
< hm L VET I =) o3
Liu and Weng [8] showed the bound
i—1
i=1
A< : (2-6)

2

{di+\/W}’ @7

Oliveira et al. [9] showed that

p < max
1<i<n

and

uélglgn{dﬂr\/M}. (2-38)
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Chen and Wang [10] obtained the following bound

(6 = 1) + 8[2m + A% — (n — 1)3]

p< 5 (2-9)
Maden et al. [11] showed that
di +2d; — 1 d; +2d; — 1) + 4d;
Mgmax{ *od +V/(di+2d; - )7 + } (2 —10)
vy~ 2
Li and Pan [12] gave the following bound
A+d5—-1 A+d5—1)2+82m—(n—1)
p<BF +V(A+0-1)7 +82m — (n—1)9] 2-11)

- 2
Li and Pan [13] presented the following bound
< i(di i } -
p< max {\/Zd (d; + my) (2-12)
Fan and Weng [14] gave the following bound

4
where t (resp. s) denotes the maximum number of common neighbors of a pair of adjacent

,LLSA—Z-F\/(A—8)2+(1+t)A+s(n—l)—A2, (2 -13)

vertices (resp. nonadjacent distinct vertices) of G.
Su et al. [15] gave the bound that

dy+2d; —1 2d; —dy +1)2 4+ 8(: — 1)(dy — d;
< min{1+ +/( 14+ 1)2+8(i — 1)(dy )} (2 14)
1<i<n 2
Cui et al. [16] showed that
i1
d1+2di—1+\/(2di—d1+1)2+8 S (dp —d;)
k=1
< i _
ns mip { 2 J @2-19

83 New sharp upper bounds for the adjacency and the signless
Laplacian spectral radius of graphs

Throughout this section, let G be a simple graph with n vertices and m edges and K,, be a
complete graph with n vertices. Recall that the line graph G of a graph G is the graph whose
vertices are the edges of G, with two vertices in G adjacent whenever the corresponding edges
in G have exactly one vertex in common. Observe that every edge e;; € E(G) corresponding to
a vertex v;; € V(GF). Let di; = dij(GY), mij = m;j(G') be the degree and average 2-degree
of vertex v;; in G~L.

Now, we will establish some new sharp upper bounds for the adjacency and the signless

Laplacian spectral radius of graphs in terms of d;, m;, A, J.

Lemma 3.1. ( [1], Lemma 2.1) Let G be a simple graph with n vertices and m edges, and

A, § be the mazimum and minimum degree of G, respectively. Then

dim; <2m —(n—1)d + (6 — 1)A.
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Lemma 3.2. ( [17], Lemma 3.1) Let G be a simple graph and G* be its line graph, then
W(G) =2+ A(GP),

where u(G) and AN(GF) are spectral radius of Q(G) and A(GF), respectively.

Let us recall the famous Lagrange’s identity.

Lemma 3.3. Let n be positive integer, ai,as, -+ ,ayn, b1, ba, -+ , by be real numbers. Then

n n n
(ZaD(X0) = (X a0+ 3 (ajbe — arb;)*.
j=1 j=1 j=1 1<j<k<n
Lemma 3.4. ( [17] Theorem 3.2) Let G be a simple graph, d;, m; be the degree and average
2-degree of vertex v; in G. Then d;;(G*) =d; +d; — 2 and

dl(dl +m,; —4) —l—dj(dj +m; —4) +4

.. L —
mig (G7) d;+d; —2

Theorem 3.1. Let G be a triangulation with n vertices and m edges, A = (aij)nxn be its

adjacency matriz, and A be the largest eigenvalue. Then

1+ v4d;m; —4d; +1
AG) < max { + m * }
1<i<n 2

Moreover, if any two adjacent vertices of G have exactly one common adjacent vertezx, and
xp = xj for any 1,5,k € {1,2,...,n} satisfying j < k, a;; = a;r, = 1, aji, = 0, then equality
holds if and only if for each i, dym; — d; = k, where k is a positive integer. Especially if
G = K3, then equality holds.

Proof. Since A is an irreducible nonnegative matrix, by the famous Perron-Frobenius
Theorem, the largest eigenvalue ) is simple and there exists a unique positive unit eigenvector
X = (x1,22, - ,2,)T corresponding to .

Clearly, XTX = 22 + 22 + --- + 22 = 1. Then, from AX = AX it follows that

n n
A=AXTX = XTAX = ajjam;.
i=1 j=1
Since A is symmetric matrix, we get

n n n n
Z aij(:z:i — Ij)2 = Z d7IZ2 — 2 Z aijinj = Z dvfﬂ? — Z aiinIj.
1<i<j<n i=1 1<i<j<n =1 i=1j=1
That is,
n
aij(xi — {Ej)2 = Zdl.’ﬁf . (].)
1<i<j<n i=1
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n
For each %, we have Az; = )" a;;2; = Az;. Thus we have
i=1

n
=) aya;)’
j=1

Let a; = \/a;;,b; = \/a;;x;. By Lemma 3.3, we have

Vol. 34, No. 1

a? = (Y’ = (L a) (Y ayed) = X (Vagyawre - vVawyae;)

1<j<k<n

= diZaijx? - Z (V/@ijVikTr — /i ‘/awx])
j=1

1<j<k<n

=d; z_:laijxﬁ - Y (Vagam (e — ;)

1<j<k<n
n
2 2
=d; g AijT; — E (zr —x5)".
j=1 1<j<k<n

a;j=a;r=1

Summing over all 4, we obtain

n n n n
2,2
DN =) i) ayi=3, > (@e—z)
i=1 i=1 j=1 i=1 1<j<k<n
ajj=a;=1

n

RS DD DI
Jj=1

i=1 1<j<k<n
ajj=a;p=1

n
2 2
B ILEED DD DT
=1 jr~i i=1 1<j<k<n

ajj=a;p=1

Yodmgai =Y > (ak—ay)?
j=1

i=1 1<j<k<n

n
=1

aij=a;r=1

(zr — x5)°.

I
B
E
&,

\
NIE
N

i=1 i=1 1<j<k<n
aij=a;k=1

Noting that G is a triangulation, we have

SEEDS (xk_wzé S (e —ay)?

i=1 1<j<k<n 1<j<k<n
aij:aikZI aij:aik:LaijI
2 _ . )2
> Y (@)= ) agelee - ap)’
1<j<k<n 1<j<k<n
ajk:1

The first equality in (2) holds if and only if z, = x;, for any 7,7,k € {1,2,...,

(2)

n} satisfying

Jj <k, a;j =ajx =1, and ajr = 0. The second equality in (2) holds if and only if any two
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adjacent vertices of G have exactly one common adjacent vertex, or x; = x; for any adjacent
vertices (v, vx) with more than one common adjacent vertex.

From (1) and (2), we have

n

n

XX (m—w)? 2 Y diad - A

i=1 1<j<k<n Jj=1
aij:aikzl

Thus, we have

; delm —Z Z xk—xj

i=1 1<j<k<n
a;j=a;p=1

< Z dym;x Z djz? + A,
This yields the following relations

Then there must exist i € {1,2,...,n} such that \> — X\ + d; — d;m; < 0. Equality holds if and
only if dym; — d; = A2 — X be a positive integer.

This implies that

A
2
Thus, we have
(3
A< max {1+\/4dm —4d; +1 }
1<i<n

It follows from the above proof that if any two adjacent vertices of G have exactly one
common adjacent vertex, and xj = x; for any 4, j, k € {1,2,...,n} satisfying j < k, a;; = ajx =
1, ajr = 0, then equality holds if and only if for each ¢, dym; — d; = k, where k is a positive
integer. Especially if G = K3, then equality holds in Theorem 3.1. O

Remark 3.1. If G is regular of degree r, then d;m; —d; =% —r for all i € {1,2,...,n}. We
assert that there exist some non-regular graphs that satisfy d;m; — d; = k for all i (see Fig.1).
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A\ DA

Fig.l The graphs By, By, ..., B

By direct calculations, d;m; — d; = 2t for the graph B; with n =2t + 1, (¢t = 2,3,---) for all
ie{1,2,...,n}.

Remark 3.2. Two graphs G; and G2 (see Fig.2) are presented to illustrate that the upper
bound in Theorem 3.1 is better than the bounds in [3—7] in some cases. Furthermore, it can

be observed from Table 1 that our bound in Theorem 3.1 is very close to A.

AV

Fig.2 Graphs Gy and G,

Table 1: The value of some classic upper bounds for the above two graphs

A Theorem 3.1  (2-1)  (22)  (2-3) (24)  (25)  (2-6)
Gi  4.7990 5.1098 53852 5.1962 5.5208 5.1962 5.4641  5.0000
Gy 2.9354 3.0000 31623 3.1623 3.2749 3.0000 3.2361  3.0000

From Table 1, we see the bound in Theorem 3.1 is the best in the above mentioned upper
bounds (2-1)—(2-5) for G and Gs. But the upper bound 5.0000 in (2-6) which is better than
the upper bound 5.1098 obtained from Theorem 3.1 for Gy, and the upper bound 3.0000 in

(2-6) which is the same as the one obtained from Theorem 3.1 for Ga.

Corollary 3.1. Let G be a triangulation with n vertices and m edges, then

- 1+ A2m—(n—1)5+ (6 — 1)A] —45 +1

A 5 ,

where X is the spectral radius of G, with equality holds if G = Ks.

Proof. By Lemma 3.1 and Theorem 3.1, we have
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A<

max { 1+\/4[2m—(n—1)3+(5—1)A]—4di+1 }
1<i<n

Thus, we obtain

- 1+ A2m—(n—1)5+ (6 — 1)A] —45 +1

A 2

By direct calculations, equality holds if G = Kj. O
Lemma 3.5. If G is a triangulation, then its line graph G* is also a triangulation.

Proof. Suppose that G is not a triangulation, then there exist two adjacent vertices Uzys Vgz €
V(GT), which have no common adjacent vertex, i.e., no edges are adjacent to both two edges
zy and zz in G. Hence, G has no subgraphs H;, Hs as follows (see Fig.3). Then, the vertice =

and y in G have no common adjacent vertex, a contradiction. O

Fig.3 Graphs Hy and H,

Corollary 3.2. Let G be a triangulation, p be its signless Laplacian spectral radius. Then

1+ \/4d$ + ddim; + 4d? + dd;m; — 20d; — 20d; + 25
u < 2+ max { 5 },

Vi~V

with equality holds if G = K.

Proof. Let GL be the line graph of G. By Lemma 3.4, for any v;; € V(G*) we have

dij(GL) = d; + d; — 2 and m;;(GF) = LAt e (tm D4

By Lemma 3.5, the line graph of triangulation is also a triangulation. Using Lemma 3.2 and

Theorem 3.1, we have

1+ \/4d§ + 4dym; + 4d2 + 4d;m; — 20d; — 20d; + 25
u < 2+ max { 5 }

Vi~V

If G = K3, it is easy to check that equality holds. O
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Remark 3.3. The upper bound in Corollary 3.2 is better than the upper bounds for the

signless Laplacian spectral radius in [9-14] in some cases. Three graphs G5, G4 and G5 are

given as follows.

G; G Gs

Fig.4 Graphs G, Gyand G5

Table 2: The value of some classic upper bounds for the above three examples

g Corollary 32  (27)  (28)  (29)  (2-10) (2-11)  (2-12)

(2-13)

Gs  5.5616 5.7016 6.4721  6.8284  6.8443 73723  6.2749  6.9282
Gy 52361 5.3723 55311  5.6458  5.6235  6.0000  5.4641  5.6569
Gy 11.4784 12.2596 13.3066 14.6904 16.0000 19.1853 13.8815 25.2982

6.9211
6.0000
17.1322

From Table 2, we see that the bound in Corollary 3.2 is the best in the above men-
tioned upper bounds (2-7)—(2-13) for G3, G4 and Gs. But both bounds in (2-14) and (2-
15) are sharp for G5, G4, and 13.0000, 13.0000 for Gs. Moreover, by applying the upper
bounds in (2-6) plus two with ¢ = 5,2,5 to the line graphs of G3, G4, G5 (degree sequence
(4,4,4,4,2,2),(4,3,3,3,3), (11%,1016, 41, 2%)), respectively, we can find the upper bound of x
are 5.7016, 5.2361, 12.3523, that the second one is better than the upper bounds 5.3723, the
first one is the same as 5.7016, the last one is larger than the upper bound 12.2596 obtained

from Corollary 3.2, respectively.

Corollary 3.3. Let G be a triangulation with n vertices and m edges, and G* be its line

graph with n* vertices and m* edges. Then

1+ /42mE — (m — 1)0L + (6L — 1)AL] — 46L +1

n(G) <2+ 5

’

where ALY = max {di +dj — 2}, L = min {di +dj — 2} are the mazimum and minimum

Vi~V ViU

degrees of the vertices of G, respectively, with equality holds if G = Ks.
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Proof. Let G* be the line graph of G. We note from the definition of line graph, n” = m and
> (di+d;=2)
mb = Wﬁf be the number of vertices and edges of G, respectively. By Corollary 3.1,

we have

L+ \/A42mE — (m — 1)6F + (6L — 1)AL] —46L +1

AGh) < 5

By Lemma 3.2, we obtain

L+ /A2mE — (m — 1)6L + (6L — 1)AL] — 46L + 1

<2
<2+ D)
It is straightforward to verify that if equality holds, the line graph of G must be Kj3. This
implies that G is K. O

Theorem 3.2. Let G be a triangulation with n vertices and m edges. If each edge of G at
least belongs to t (t > 1) triangles, then

A < max { }
1<i<n 2
Moreover, if any two adjacent vertices of G have exactly t common adjacent vertices, and
xp = x; for any 1,5,k € {1,2,...,n} satisfying j < k, a;j = ai = 1, ajx = 0, then equality
holds if and only if for each i, d;m; — d; = k, where k is a positive integer. FEspecially if
G =2 K19, then equality holds.

Proof. By Theorem 3.1, if each edge of G at least belongs to ¢ (¢ > 1) triangles, we have

n n

Y (w—wx)P= ) > (we—w))?
i=1 1<j<k<n i=1  1<j<k<n
aij:aikZI aij:aikzl,ajk:1
>ty (we—a)’ =t > agrs— ) (3)
1<j<k<n 1<j<k<n
ajr=1

and

n
2,2 _
E A% E dmleg E mkij
=1 =1 1<j<k<n
a;j=a;p=1

Zn: Zd«x%tx

The first equality in (3) holds if and only if zp = z], for any 7,7,k € {1,2,...,n} satisfying
J <k, a;; =a;; =1, and ajz = 0. The second equality in (3) holds if and only if any two
adjacent vertices of G have exactly ¢ common adjacent vertices, or x; = x; for any adjacent
vertices (v;, vx) with more than ¢ common adjacent vertices.

Thus, we get
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()\2 —tA + tdi — dzmz)xf S 0.

o

i=1

Then there must exists ¢ € {1,2,...,n} such that
)\2 —tA + tdz - diml S 0.

This implies that

A 2

Hence,

A < max
1<i<n

t 4+ V4d;m; — 4td; + t2
{ 5 J

Similarly with the proof of Theorem 3.1, if any two adjacent vertices of G have exactly ¢
common adjacent vertices, and xp = z; for any 4,j,k € {1,2,...,n} satisfying j < k, a;; =
air, = 1, aj; = 0, then equality holds if and only if for each i, d;m; — d; = k, where k is a
positive integer. Especially if G = Ky 9, then equality holds. O

Corollary 3.4. Let G be a triangulation with n vertices and m edges. If each edge of G at
least belongs to t(t > 1) triangles, then

t+ \/4d3 + 4dim; + 4d5 + 4dym; — (16 4 4t)d; — (16 + 4t)d; 4 16 + 8t + 12

; j

uS?—i—max{

Vi~YU4

where u is the signless Laplacian spectral radius.

Proof. Let G be the line graph of G. Noting that to every triangle in G, there corresponds a
triangle in G¥. Tt follows that each edge of G also at least belongs to t triangles. By

Theorem 3.2 and Lemma 3.4, we have

MGH) < max

vi; EV(GL)

{t+ \/4dijmi;- — dtd;; + 2 }

Recall that,

di(di—i—mi—él)—&-dj(dj—&-mj —4)+4

dij(G") = d; + dj — 2,m;(G") = d 1 d _2
i +dj

Therefore,
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MGT) < max

E \J4d? + ddym + Ad? + Adym; — (16 + 41)d; — (16 4 46)d; + 16 + 8¢ + ¢

v~V { 2 }

Thus, by Lemma 3.2, we have

< 2+ max

1]

2]

3]

[4]

[5]

[6]

(10]

(11]

(12]

t+ \/4d§ + ddim; + 4d3 + 4dym; — (16 + 4t)d; — (16 + 4t)d; + 16 + 8t + 2

] { 2 }

O

References

JM Guo, J X Li, W C Shiu. A note on the upper bounds for the Laplacian spectral radius of graphs,
Linear Algebra Appl, 2013, 439: 1657-1661.

J A Bondy, USR Murty. Graph Theory with Application, North Holland, Amsterdam, 1976.

Y Hong. A bound on the spectral radius of graph in terms of genus, Combin Theory Ser B, 1998(74):
153-159.

K CDas, P Kumar. Some new bounds radius of graphs, Discrete Math, 2004, 281: 149-161.

R P Stanley. A bound on the spectral radius of graphs with e edges, Linear Algebra Appl, 1987(87):
267-269.

SBHu. Upper bound on the spectral radius of graphs, Journal of Hebei University, 2000, 20(3):
231-234.

JL Shu, Y R Wu. Sharp upper bounds on the spectral radius of graphs, Linear Algebra Appl, 2004,
377: 241-248.

C A Liu, CW Weng. Spectral radius and degree sequence of a graph, Linear Algebra Appl, 2013,
438(8): 3511-3515.

C S Oliveira, L Sde Lima, N M M de Abreu, P Hansen. Bounds on the indezx of the signless Laplacian
of a graph, Discrete Appl Math, 2010, 158: 335-360.

Y Q Chen, L G Wang. Sharp bounds for the largest eigenvalue of the signless Laplician of a graph,
Linear Algebra Appl, 2010, 433: 908-913.

A D Maden, K CDas, ASCevik. Sharp upper bounds on the spectrum radius of the signless Lapli-
cian matriz of a graph, Linear Algebra Appl, 2013, 219: 5025-5032.

JLi, YPan. Upper bounds for the Laplacian graph eigenvalues, Acta Math Sin (Engl Ser),
2015(2004): 803-806.



112

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

¢
¢

Appl. Math. J. Chinese Univ. Vol. 34, No. 1

JSLi, YPPan. De Caen’s inequality and bounds on the largest Laplacian eigenvalues of a graph,
Linear Algebra Appl, 2001, 328: 153-160.

FLFan, CW Weng. A characterization of strongly regular graphs in terms of the largest signless
Laplacian eigenvalues, Linear Algebra Appl, 2016, 506: 1-5.

GLYu, YRWu, JLSu. Sharp bounds on the signless Laplacian spectral radii of graphs, Linear
Algebra Appl, 2011, 434: 683-687.

SY Cui, G X Tian, JJ Guo. A sharp upper bound on the signless Laplacian spectral radius of graphs,
Linear Algebra Appl, 2013, 439: 2442-2447.

Y H Chen, RY Pan, XD Zhang. Two sharps upper bounds for the signless Laplacian spectral radius
of graphs, Descrete Mathmatics, Algorithms and Applications, 2011, 3(2): 185-191.

JP Liu, BLLiu. Bounds of Estrada index of graphs, Appl Math J Chinese Univ (Ser B), 2010,
25(3): 325-330.

G D Yu, GX Cai, YZFan. Some notes on the spectral perturbations of the signless Laplacian of a
graph, Appl Math J Chinese Univ (Ser B), 2014, 29(2): 241-248.

X D Chen, J G Qian. Bounding the sum powers of the Laplacian eigenvalues of graphs, Appl Math
J Chinese Univ (Ser B), 2011, 26(2): 142-150.

GHYu, LHFeng, Allié, D Stevanovié. The signless Laplacian spectral radius of bounded degree
graphs on surfaces, Discrete Appl Math, 2015, 9: 332-346.

GLYu, JW Wang, SG Guo. Mazima of the signless Laplacian spectral radius for planar graphs,
Electronic Journal of Linear Algebra, 2015(30): 795-811.

BHe, YL Jin, XD Zhang. Sharp bounds for the signless Laplacian spectral radius in terms of clique
number, Linear Algebra Appl, 2013, 438: 3851-3861.

ollege of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China.
ollege of Mathematics and Data Science, Minjiang University, Fuzhou 350108, China.
Email: wuxianzhangll@163.com

3 Key Laboratory of Intelligent Metro of Universities in Fujian Province, Fuzhou University,
Fuzhou 350108, China.

Email: 1jping010@163.com



