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Asymptotic periodic solutions of some generalized

Burgers equations

Smriti Nath Ch. Srinivasa Rao

Abstract. In this paper, we construct asymptotic periodic solutions of some generalized Burg-

ers equations using a perturbative approach. These large time asymptotics (constructed) are

compared with relevant numerical solutions obtained by a finite difference scheme.

§1 Introduction

In this article, we study large time asymptotics for periodic solutions of some generalized

Burgers equations, namely,

GBE1 ut + u2ux +
ju

2t
= εuxx, x ∈ R, t > 0, (1)

GBE2 ut + (au+ bu2)ux = εuxx, x ∈ R, t > 0, (2)

satisfying the initial-boundary conditions

u(x, t0) = u0(x), x ∈ R, (3)

u0(0) = u0(2π) = 0, (4)

u(x, t) = u(x+ 2π, t), x ∈ R, t > 0, (5)

where ε > 0 is small and j ≥ 0, a > 0, b > 0 are constants. The initial function u0(x) is

continuous, periodic, and bounded on R. We use t0 = 1 for GBE1 (1) and t0 = 0 for GBE2 (2).

In general, generalized Burgers equations are not exactly linearizable via Hopf-Cole like

transformations (see Sachdev [18], Nimmo and Crighton [13]).

We follow closely the work of Sachdev et al. [21]. Sachdev et al. [21] constructed the large

time asymptotic periodic solutions of the modified Burgers equation

ut + unux =
δ

2
uxx, x ∈ R, t > 0, (6)
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subject to conditions

u(x, 0) = A sinx, x ∈ R, (7)

u(x, t) = u(x+ 2π, t), x ∈ R, t > 0. (8)

Let x0(t) be the zero of the solution u of the initial value problem (6)-(8) and x0(0) = 0.

Their numerical study showed that x0(t) ≡ 0 for n = 3 and x0 is a function of t converging

to a constant as t → ∞ when n = 2. They used a perturbative approach to construct the

asymptotic periodic solutions of (6)-(8) for n = 2, 3. The idea in this approach is to assume

that the large time asymptotic behavior of the periodic solutions of (6)-(8) is described by the

relevant solution of “linearized problem” and improve this solution of the linearized problem

by incorporating the effect of nonlinear terms. This approach was inspired by the method of

dominant balances (see Bender and Orszag [3]). One may refer to Sachdev et al. [20], Vaganan

and Padmasekaran [26, 27] for the study of large time asymptotic periodic solutions of some

other generalized Burgers equations.

Consider the convection-reaction-diffusion problem

vt = vxx + ε(vm)x + vp, 0 < x < L, t > 0, (9)

v(0, t) = v(L, t) = 0, t ≥ 0, (10)

v(x, 0) = v0(x) ≥ 0, 0 < x < L, (11)

where ε > 0, m ≥ p > 1 and v0 ∈ L∞(0, L). The analysis of Chen et al. [4] showed that

there exists ε0 > 0 such that the solutions of (9)-(11) decay exponentially to zero as t → ∞
for all ε > ε0. Levine et al. [10] investigated the large time behavior of positive solutions of the

problem (9)-(11) with 1 ≤ m < p.

Tersenov [23] studied the initial boundary value problem

ut + g(t, u)ux + f(t, u) = εuxx, −l < x < l, 0 < t < T, (12)

u(x, 0) = φ(x), −l ≤ x ≤ l, (13)

u(±l, t) = 0, 0 < t < T, (14)

where T and ε are positive constants. Assuming certain conditions on f , g, and φ, he proved

the existence and uniqueness of global “classical” solution of the initial boundary value problem

(12)-(14). He also showed that u→ 0 as t→∞. One may refer to Tersenov [24,25] for a related

study.

Kato [9] studied the generalized Burgers equation

ut +

(
b

2
u2 +

c

3
u3
)
x

= uxx, x ∈ R, t > 0, (15)

subject to the initial condition

u(x, 0) = u0(x), x ∈ R, (16)

b 6= 0, c ∈ R. Under suitable conditions on u0, Kato [9] proved that the optimal rate at

which the solution of (15)-(16) converges to the self-similar solution of the Burgers equation is

t−1 log(t) in L∞(R) as t → ∞. In the present paper, we construct the large time asymptotic

periodic solutions of (15).
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Oruç et al. [14] studied numerically the generalized Burgers equations

ut + unux = νuxx, a < x < b, t > 0,

ut + (V + u)ux = νuxx, x ∈ R, t > 0,

satisfying the initial-boundary conditions

u(x, 0) = g(x), a < x < b,

u(a, t) = f1(t), u(b, t) = f2(t), t ∈ [0, T ],

using Haar wavelet-finite difference method. Here, ν > 0, V > 0 are constants and n is a

positive integer. They compared their numerical solution with the solution obtained by Sachdev

et al. [21] (see also Duan et al. [6, 7]).

Grundy et al. [8] constructed large time asymptotic solutions of the generalized Burgers

equation

ut = δuxx −
(
uα+1

)
x
− Ju

2t
, J > 0, α > 0,

with non-negative initial profile, when either α < 1/(J + 1) or α > 1/(J + 1), via balancing

arguments. It was assumed that the initial profile is bounded on (−∞,∞). Further the initial

profile has compact support or it vanishes sufficiently rapidly as |x| → ∞ (for example, like

exponential decay). Rao and Satyanarayana [17] constructed large time asymptotic N-wave

solutions for α = 1 using a balancing argument.

Pocheketa et al. [16] investigated classification of Lie symmetries and constructed exact

solutions of variable coefficient generalized Burgers equations

ut + unux + h(t)u = g(t)uxx, ng 6= 0.

Here h and g are smooth functions.

Mishra and Kumar [11] obtained exact solitary wave solutions of the nonlinear convection-

reaction-diffusion equations

Ct + k(t)CCx = DCxx + αC − βC2,

Ct + k(t)C2Cx = DCxx + αC − βC4,

when (i) k is a constant, (ii) k is a function of t.

The organization of this paper is as follows. In section 2–3, we construct large time asymp-

totics for periodic solutions of the generalized Burgers equations (1)-(2). In section 4, we

validate these asymptotic solutions with the relevant numerical solutions obtained via a finite

difference scheme due to Dawson [5]. Section 5 puts forward the conclusions.

§2 Large time asymptotics for periodic solutions of GBE1

This section presents the large time asymptotic behavior of periodic solutions of the general-

ized Burgers equation GBE1 (1) subject to conditions (3)-(5). We assume that the 2π-periodic

solution

u(x, t) = A1t
−j/2e−εt sin(x− x0) (17)
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of the linear partial differential equation

ut +
ju

2t
= εuxx (18)

describes the large time asymptotic behavior of 2π-periodic solutions of GBE1 (1) satisfying

conditions (3)-(5). We are going to improve upon the large time asymptotic solution (17) using

a perturbative approach. This idea was quite neatly presented in Bender and Orszag [3] (p.

146) for nonlinear ordinary differential equations and Sachdev [19] (p. 257) for nonlinear partial

differential equations.

Our numerical study of GBE1 (1) subject to conditions (3)-(5) showed the movement of

the zeros of the solution of GBE1 (1) and their stabilization as t→∞. This observation is an

expected one in view of the study of GBE1 (1) with j = 0 presented in Sachdev et al. [21]. In

view of this discussion, we attempt a solution u(x, t) of GBE1 (1) in the form

u(x, t) = A1t
−j/2e−εt sin(x− x̃0(t)) + U1(x, t), (19)

x̃0(t)→ x0 as t→∞.

We note that x̃0(t) is the zero of the solution u of GBE1 (1) satisfying x̃0(t0) = 0. In other

words, x̃0(t) describes the movement of the zero x = 0 of u(x, t0) as the initial profile u(x, t0)

evolves under GBE1 for time t > t0.

Let

x̃0(t) = x0 + x1(t)e−2εt + x2(t)e−4εt + x3(t)e−6εt + · · · . (20)

This form is inspired by the work of Sachdev et al. [21]. Using (19) into (1) and ignoring the

higher order terms, we have

U1,t +
j

2t
U1 − εU1,xx ∼A1t

−j/2e−εtx̃′0(t) cos(x− x̃0(t))

− A3
1

4
t−3j/2e−3εt [cos(x− x̃0(t))− cos 3(x− x̃0(t))] (21)

as t→∞. Equations (20) and (21) imply that

U1,t +
j

2t
U1 − εU1,xx ∼e−3εt

[(
A1(x′1 − 2εx1)− A3

1

4
t−j
)
t−j/2 cos(x− x̃0(t))

+
A3

1

4
t−3j/2 cos 3(x− x̃0(t))

]
as t→∞. (22)

Motivated by the right hand side of (22), we assume the form for U1 as

U1(x, t) ∼ e−3εt [c1(t) cos(x− x̃0(t)) + c2(t) cos 3(x− x̃0(t))] as t→∞. (23)

Using (23) in (22) and comparing the coefficients of cos(x− x̃0(t)) and cos 3(x− x̃0(t)), we have

c′1 +

(
j

2t
− 2ε

)
c1 = A1 (x′1 − 2εx1) t−j/2 − A3

1

4
t−3j/2, (24)

c′2 +

(
j

2t
+ 6ε

)
c2 =

A3
1

4
t−3j/2. (25)

Let

c2(t) = t−3j/2
∞∑
n=0

ant
−n. (26)
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Using (26) in (25) and comparing same powers of t, we obtain

a0 =
A3

1

24ε
, (27)

6εan = (j + n− 1)an−1, n ≥ 1. (28)

It is important to note that the asymptotic series of form (26) is useful for sufficiently large

time and an appropriate number of terms have to be used for getting accurate results. An

interesting discussion on an asymptotic series can be seen in Moritz [12].

We require that

u(x̃0(t), t) = u(x̃0(t) + 2π, t) = 0,

and thus

U1(x̃0(t), t) = 0. (29)

This, in turn, implies that c1(t) + c2(t) = 0. Thus

c1(t) = −t−3j/2
∞∑
n=0

ant
−n. (30)

Equations (30) and (24) give the differential equation for x1:

x′1 − 2εx1 =
8ε

A1
t−j

∞∑
n=0

ant
−n. (31)

The right hand side of equation (31) suggests a particular solution for (31) of the form

x1(t) = t−j
∞∑
n=0

bnt
−n. (32)

Substituting expression (32) for x1 in (31) and comparing the same powers of t, we arrive at

b0 = −A
2
1

6ε
,

2εA1bn = −A1(n− 1 + j)bn−1 − 8εan, n ≥ 1.

Thus x̃0(t) takes the following form, as t→∞,

x̃0(t) = x0 + e−2εtt−j
∞∑
n=0

bnt
−n + o(e−4εt). (33)

Therefore the large time asymptotic solution u(x, t) of (1) takes the form, as t→∞,

u(x, t) = A1t
−j/2e−εt sin(x− x̃0(t))

+ e−3εt [c1(t) cos(x− x̃0(t)) + c2(t) cos 3(x− x̃0(t))] + · · · , (34)

where c1(t), c2(t), and x̃0(t) are given in equations (30), (26), and (33), respectively. Here A1

and x0 are unknowns and may be found numerically or otherwise.

Inspired by form (34) of the large time asymptotic solution of GBE1 (1), we make the change

of variable y = x− x̃0(t). Then the partial differential equation GBE1 (1) in new variable y is

given by

ut − x̃′0(t)uy +
ju

2t
+ u2uy = εuyy. (35)

In view of (34), we attempt the large time asymptotic solution of (1) in the form

u(y, t) = e−εtv0(y, t) + e−3εtv1(y, t) + e−5εtv2(y, t) + · · · . (36)
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Substituting expression (36) for u in the partial differential equation (35) and comparing the

coefficients of e−εt, e−3εt, and e−5εt, we get the following partial differential equations for v0,

v1, and v2 :

v0,t − εv0 +
j

2t
v0 = εv0,yy,

v1,t − 3εv1 − (x′1 − 2εx1)v0,y + v20v0,y +
j

2t
v1 = εv1,yy,

v2,t − 5εv2 − [(x′1 − 2εx1)v1,y + (x′2 − 4εx2)v0,y] + v20v1,y + 2v0v1v0,y +
j

2t
v2 = εv2,yy. (37)

In view of equation (34), we have

v0(y, t) = A1t
−j/2 sin y, (38)

v1(y, t) = c1(t) cos y + c2(t) cos 3y, (39)

where c1(t) and c2(t) are given by (30) and (26), respectively. Here A1 is an unknown constant

and is referred to as oldage constant. The oldage constant is the constant appearing in the

large time (oldage) solution of the initial boundary value problem. Use of forms (38)-(39) for

v0 and v1 in (37) suggests the following form of solution for v2:

v2(y, t) = c3(t) sin y + c4(t) sin 3y + c5(t) sin 5y. (40)

Equations (37)-(40) lead to the following differential equations for x2, c3, c4, and c5:

x′2 − 4εx2 = 0, (41)

c′3 +

(
j

2t
− 4ε

)
c3 = −c1(x′1 − 2εx1) +

A2
1

2
t−jc1, (42)

c′4 +

(
j

2t
+ 4ε

)
c4 = 3c1(x′1 − 2εx1)− 9

4
A2

1t
−jc1, (43)

c′5 +

(
j

2t
+ 20ε

)
c5 =

5A2
1

4
t−jc1. (44)

Equation (41) gives that x2(t) = 0, otherwise x2(t) becomes unbounded.

Equations (30), (32), and (42) imply that

c′3 +

(
j

2t
− 4ε

)
c3 =

8ε

A1
t−5j/2

( ∞∑
n=0

ant
−n

)2

− A2
1

2
t−5j/2

∞∑
n=0

ant
−n. (45)

The right hand side of (45) suggests the form

c3(t) = t−5j/2
∞∑
n=0

Bnt
−n. (46)

Substituting expression (46) for c3 in (45) and comparing the same powers of t, we arrive at

the following equations for Bi, i ≥ 0:

4εB0 = − 8ε

A1
a20 +

A2
1

2
a0, (47)

4εBn + [2j + n− 1]Bn−1 = − 8ε

A1

n∑
k=0

akan−k +
A2

1

2
an, n ≥ 1. (48)
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Equations (30), (32), and (43) imply that

c′4 +

(
j

2t
+ 4ε

)
c4 = −24ε

A1
t−5j/2

( ∞∑
n=0

ant
−n

)2

+
9A2

1

4
t−5j/2

∞∑
n=0

ant
−n. (49)

Substituting

c4(t) = t−5j/2
∞∑
n=0

Ent
−n (50)

in (49) and comparing the coefficients of same powers of t, we arrive at the following equations

for Ei, i ≥ 0:

4εE0 = −24ε

A1
a20 +

9A2
1

4
a0, (51)

4εEn − [2j + n− 1]En−1 = −24ε

A1

n∑
k=0

akan−k +
9A2

1

4
an, n ≥ 1. (52)

Again substituting expression (30) for c1 and

c5(t) = t−5j/2
∞∑
n=0

Fnt
−n, (53)

in (44) and comparing the coefficients of same powers of t, we obtain the following equations

for Fi, i ≥ 0:

F0 = −A
2
1

16ε
a0, (54)

20εFn − [2j + n− 1]Fn−1 = −5A2
1

4
an, n ≥ 1. (55)

Thus, the large time 2π-periodic asymptotic solution u(x, t) of (1) satisfying (3)-(5) is given by

u(x, t) =A1t
−j/2e−εt sin(x− x̃0(t)) + e−3εt[c1(t) cos(x− x̃0(t)) + c2(t) cos 3(x− x̃0(t))]

+ e−5εt[c3(t) sin(x− x̃0(t)) + c4(t) sin 3(x− x̃0(t)) + c5(t) sin 5(x− x̃0(t))] + · · · ,
(56)

x̃0(t) = x0 + e−2εtt−j
∞∑
n=0

bnt
−n +O(e−6εt)

where ci(t), i = 1, 2, . . . , 5 are given by (30), (26)-(28), (46)-(48), (50)-(52), (53)-(55), respec-

tively.

We present below c1, c2, and x1 in terms of integrals. For j = 1, the functions c1, c2, and

x1 can be written in terms of a special function called Exponential integral Ei(x).

The functions c1, c2, and x1 in terms of integrals for general j:

The general solution of equation (25) is

c2(t) =
A3

1

4
t−j/2e−6εt

∫ t

z−je6εzdz + c̃t−j/2e−6εt, (57)

c̃ is an integration constant. One may use integration by parts (see Pinsky [15] p. 350) to show

that ∫ t

z−je6εzdz = e6εtt−j
[

1

6ε
+

j

36ε2
t−1 +O(t−2)

]
, t→∞. (58)
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Using (58) in (57) and looking for the asymptotic behavior of c2 as t→∞, we have

c2(t) ∼ t−3j/2
[
A3

1

24ε
+

jA3
1

144ε2
t−1 +O(t−2)

]
. (59)

This is in agreement with the form of solution for c2 given in (26). Because of the asymptotic

behavior (59) as t→∞, we may write

c2(t) ∼ A3
1

4
t−j/2e−6εt

∫ t

z−je6εzdz.

Equation (29) implies that

c1(t) = −c2(t) ∼ −A
3
1

4
t−j/2e−6εt

∫ t

z−je6εzdz. (60)

Using (60) in (24) and solving for x1, we get

x1(t) ∼ − 8ε

A1
e2εt

∫ t

c1(z)zj/2e−2εzdz.

The functions c1, c2, and x1 in terms of Exponential integrals for j = 1:

−c1(t) = c2(t) ∼ A3
1

4
√
t
e−6εtEi(6εt) as t→∞ (61)

and x1(t) is given by

x1(t) ∼ A2
1

4

(
e2εtEi(−2εt)− e−6εtEi(6εt)

)
as t→∞.

Here

Ei(t) :=

∫ t

−∞

ex

x
dx, t 6= 0

is called the Exponential integral and for t > 0 the value of the integral is given by the Cauchy

principal value (see Andrews [2] p. 103 and Abramowitz and Stegun [1] p. 228).

Thus, we have, for j = 1,

u(x, t) = A1t
−1/2e−εt sin(x− x̃0(t)) + e−3εt[c1(t) cos(x− x̃0(t)) + c2(t) cos 3(x− x̃0(t))] + · · · ,

(62)

x̃0(t) ∼ x0 +
A2

1

4

(
e2εtEi(−2εt)− e−6εtEi(6εt)

)
e−2εt + · · · , (63)

where c1 and c2 are given by (61).

An attempt was made by Vaganan and Padmasekaran [28] to construct asymptotic periodic

solutions of the generalized Burgers equation GBE1. However their (constructed) asymptotic

solutions have singularities at a finite time. This discrepancy was due to the choice of ci’s as

constants.

§3 Large time behavior of periodic solutions of GBE2

This section presents the large time asymptotics for periodic solutions of the generalized

Burgers equation GBE2 (2) satisfying conditions (3)-(5). Again as in Section 2, we improve upon

the solution of the corresponding “linearized”partial differential equation of (2) by considering

the effect of nonlinear terms in (2). We assume that the large time behavior of solutions of
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GBE2 is described by the solution

uL(x, t) = A1e
−εt sin(x− x0) (64)

of the linear partial differential equation

ut = εuxx (65)

satisfying conditions (3)-(5).

Let

u(x, t) = A1e
−εt sin(x− x̃0(t)) + U1(x, t), (66)

x̃0(t) = x0 + x1(t)e−εt + x2(t)e−2εt + x3(t)e−3εt + x4(t)e−4εt + · · · . (67)

Our assumption is that

U1(x, t)� O(e−εt) as t→∞
and the form used for x̃0(t) is motivated by Sachdev et al. [21].

Using (66)-(67) in (2) and ignoring the higher order terms, we have

U1,t − εU1,xx ∼ e−2εt
[
A1(x′1 − εx1) cos(x− x̃0(t))− aA2

1

2
sin 2(x− x̃0(t))

]
(68)

as t → ∞. Because we require that U1(x̃0(t), t) = 0, x1(t) has to be identically equal to zero.

Inspired by the right hand side of (68), we attempt U1 in the form

U1(x, t) ∼ e−2εtc1(t) sin 2(x− x̃0(t)) as t→∞. (69)

Equations (68)-(69) imply that

c′1 + 2εc1 ∼ −
aA2

1

2
as t→∞.

This implies that

c1(t) ∼ −aA
2
1

4ε
as t→∞. (70)

Thus

U1(x, t) ∼ −aA
2
1

4ε
e−2εt sin 2(x− x̃0(t)) as t→∞

and

u(x, t) ∼ A1e
−εt sin(x− x̃0(t)) + e−2εtc1(t) sin 2(x− x̃0(t)) as t→∞. (71)

Here c1 is as in (70).

Let us find the higher order terms as t→∞. Define

y = x− x̃0(t).

The generalized Burgers equation GBE2 given in (2) transforms to the partial differential

equation

ut +
(
−x̃′0(t) + au+ bu2

)
uy = εuyy. (72)

The form for u given in (71) suggests choose u(y, t) in the form:

u(y, t) = e−εtf1(y, t) + e−2εtf2(y, t) + e−3εtf3(y, t) + e−4εtf4(y, t) + · · · (73)

as t→∞. Using the form (73) for u in (72) and comparing the coefficients of e−εt, e−2εt, e−3εt,

and e−4εt, we get:

f1,t − εf1 = εf1,yy,

f2,t − 2εf2 − εf2,yy = (x′1 − εx1) f1,y − af1f1,y,
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f3,t − 3εf3 − εf3,yy = (x′1 − εx1) f2,y + (x′2 − 2εx2) f1,y − a (f1f2,y + f2f1,y)− bf21 f1,y, (74)

f4,t − 4εf4 − εf4,yy = (x′1 − εx1) f3,y + (x′2 − 2εx2) f2,y + (x′3 − 3εx3) f1,y

− a (f1f3,y + f2f2,y + f3f1,y)− b
(
f21 f2,y + 2f1f2f1,y

)
.

(75)

It is easy to see that, in view of (71),

f1(y, t) = A1 sin y, (76)

f2(y, t) = c1 sin 2y, c1 = −aA
2
1

4ε
, (77)

x1 = 0. (78)

Using (76)-(78) in (74), we have

f3,t − 3εf3 − εf3,yy = (x′2 − 2εx2)A1 cos y − a
(

3A1c1
2

sin 3y

− A1c1
2

sin y

)
+
bA3

1

4
(cos 3y − cos y) . (79)

The right hand side of (79) suggests the form:

f3(y, t) = B1(t) cos y +B2(t) cos 3y +B3(t) sin y +B4(t) sin 3y. (80)

Equations (79)-(80) imply that

B′1 − 2εB1 = (x′2 − 2εx2)A1 −
bA3

1

4
, (81)

B′2 + 6εB2 =
bA3

1

4
, (82)

B′3 − 2εB3 =
aA1c1

2
, (83)

B′4 + 6εB4 = −3aA1c1
2

. (84)

The requirement f3(0, t) = 0 gives

B2(t) = −B1(t).

Solving (81)-(84),

B2(t) =
bA3

1

24ε
= −B1(t), (85)

B3(t) = B4(t) = −aA1c1
4ε

.

Using (85) in (81), we obtain an ordinary differential equation for x2:

x′2 − 2εx2 =
bA2

1

3
. (86)

The relevant solution of (86) is

x2(t) = −bA
2
1

6ε
. (87)

Thus

f3(y, t) =
bA3

1

24ε
(− cos y + cos 3y) +

a2A3
1

16ε2
(sin y + sin 3y) . (88)
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Using the expressions for fi, i = 1, 2, 3 in (75), we get

f4,t − 4εf4 − εf4,yy = A1 (x′3 − 3εx3) cos y +
abA4

1

6ε
cos 2y

− abA4
1

3ε
cos 4y − 3a3A4

1

16ε2
sin 4y. (89)

Let

f4(y, t) = R1(t) cos y +R2(t) cos 2y +R3(t) cos 4y +R4(t) sin 4y. (90)

Use of (90) in (89) leads to the following equations for Ri, i = 1, 2, 3, 4.

R′1 − 3εR1 = A1 (x′3 − 3εx3) , (91)

R′2 =
abA4

1

6ε
, (92)

R′3 + 12εR3 = −abA
4
1

3ε
, (93)

R′4 + 12εR4 = −3a3A4
1

16ε2
. (94)

Solving equations (92)-(94) for relevant solutions, we have

R2(t) =
abA4

1

6ε
t,

R3(t) = −abA
4
1

36ε2
,

R4(t) = −a
3A4

1

64ε3
.

Thus

f4(y, t) = R1(t) cos y +
abA4

1

6ε
t cos 2y − abA4

1

36ε2
cos 4y − a3A4

1

64ε3
sin 4y. (95)

We require that f4(0, t) = 0. This condition on f4, in turn, implies that

R1(t) = −abA
4
1

6ε

(
t− 1

6ε

)
. (96)

Using equations (91) and (96), we get

x′3 − 3εx3 =
abA3

1

2

(
t− 1

2ε

)
. (97)

Solving (97) for x3,

x3(t) = −abA
3
1

6ε

(
t− 1

6ε

)
. (98)

Thus,

u(x, t) = e−εtf1(y, t) + e−2εtf2(y, t) + e−3εtf3(y, t) + e−4εtf4(y, t) + · · · , (99)

x̃0(t) = x0 + x1(t)e−εt + x2(t)e−2εt + x3(t)e−3εt +O
(
e−4εt

)
, (100)

where fi, i = 1, 2, 3, 4 and xi, i = 1, 2, 3 are given by (76)-(78), (87)-(88), (95)-(96), (98), is the

large time asymptotic solution for the periodic solutions of GBE2.
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§4 Numerical study

In this section, we compare the large time asymptotics obtained for generalized Burgers

equations GBE1 and GBE2 (1)-(2) with numerical solutions of these generalized Burgers equa-

tions satisfying conditions given in (3)-(5). The relevant numerical solutions are obtained using

a finite difference scheme due to Dawson [5]. We choose the spatial domain to be [0, 2π] with

2001 spatial points and ∆x = 2π/2000, ∆t = 10−4. The constants A1 and x0 are found at a

time when numerical solution of a generalized Burgers equation and the solution of the relevant

linear partial differential equation have maximum error O(10−4). We consider two different

initial profiles

u0(x) = A0 sinx (101)

and

u0(x) =



2x

π
, x ∈

[
0,
π

2

]
−2x

π
+ 2, x ∈

[
π

2
,

3π

2

]
2x

π
− 4, x ∈

[
3π

2
, 2π

]
.

(102)

It may be noted that we solve GBE1 (1) subject to the initial profile at t = 1 and GBE2

(2) with initial profile at t = 0.

Figure 1 shows two initial profiles (101) with A0 = 1 and (102). It should be noted that x0

is the limit of x̃0(t) and x̃0(t0) = 0.

Figure 1: (a) Initial profile (101); (b) Initial profile (102).

Figures 2-4 and Tables 1-3 (pp. 405, 406) present the comparison of asymptotic solutions

which are newly constructed, solutions of the linear partial differential equations, and numerical

solutions at different times for the initial profiles given above for GBEs (1)-(2).
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Figure 2: Numerical solution (unum) of the generalized Burgers equation (1) subject to the initial

profile u0(x) = 2 sinx, large time asymptotic solution (uasy) given in (56), and the solution (ulin)

of the linear partial differential equation (18) given in (17). Here the oldage constant A1 = 0.5356,

x0 = −0.7747, ε = 0.01, j = 0.1, n = 3 and (a) t = 111 (b) t = 131 (c) t = 141 (d) t = 271.

Figure 3: Numerical solution (unum) of the generalized Burgers equation (1) subject to the initial

profile (102), large time asymptotic solution (uasy) given in (62), and the solution (ulin) of the linear

partial differential equation (18) given in (17). Here the oldage constant A1 = 0.8258, x0 = 0.3319,

ε = 0.05, j = 1 and (a) t = 5 (b) t = 6 (c) t = 7 (d) t = 23.
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Figure 4: Numerical solution (unum) of the generalized Burgers equation (2) subject to the initial
profile (102), large time asymptotic solution (uasy) given in (99), and the solution (ulin) of the linear
partial differential equation (65) given in (64) for a = 1, b = 1. Here the oldage constant A1 = 0.5757,
x0 = 0.2552, ε = 0.25, and (a) t = 3 (b) t = 5 (c) t = 7 (d) t = 16.

Figure 5 shows the movement of the zeros of the solutions of GBE1 and GBE2. We feel

that the large time asymptotic solutions constructed in sections 2 and 3 may be useful for

more general nonlinear partial differential equations. To illustrate this point, we consider the

nonlinear partial differential equation

ut + sin2(u)ux +
ju

2t
= εuxx. (103)

As u → 0, we may approximate sin2(u) by u2. In other words, GBE1 may be viewed as an

approximation to the partial differential equation (103). Our numerical study shows that the

asymptotic solution (56) of GBE1 agrees quite nicely with the solutions of GBE1 and also of

(103) at different times.

Figure 6 presents the comparison of the numerical solution of the equation (103) with the

numerical solution of GBE1 (1) subject to u0(x) = sinx, the large time asymptotic solution

constructed (56), and the solution (17) of the linear partial differential equation (18) at different

times.
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Figure 5: x̃0(t)num is the zero obtained from the numerical solution of GBEs (1) or (2) and x̃0(t)asy

is the zero obtained from the formulas (33), (63), or (100) for the initial boundary value problems: (a)

GBE1 (1) with j = 0.1, ε = 0.01 subject to initial profile u0(x) = 2 sinx (b) GBE1 (1) with j = 1,

ε = 0.05 subject to initial profile (102) (c) GBE2 (2) with a = 1, b = 1, ε = 0.25 subject to initial

profile (102).

Figure 6: Numerical solution (unum) of the generalized Burgers equation (103), numerical solution
(uapp) of the generalized Burgers equation (1) subject to the initial profile u0(x) = sinx, large time
asymptotic solution (uasy) given in (56), and the solution (ulin) of the linear partial differential equation
(18) given in (17). Here the oldage constant A1 = 0.4981, x0 = −2.9396, ε = 0.01, j = 0.1 and (a)
t = 101 (b) t = 111 (c) t = 131 (d) t = 271.
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Table 1: Comparison of maximum error between

the numerical solution unum of the generalized

Burgers equation (1) (subject to the initial pro-

file u0(x) = 2 sinx) with asymptotic solution uasy

given in (56) and the solution ulin given in (17)

of the linear partial differential equation (18) at

different times when ε = 0.01, j = 0.1.
t ‖unum − uasy‖∞ ‖unum − ulin‖∞

61 0.1149 0.2025

71 0.0605 0.1484

81 0.0321 0.1087

91 0.0170 0.0796

101 0.0090 0.0582

111 0.0048 0.0425

121 0.0025 0.0309

131 0.0016 0.0225

141 0.0015 0.0163

151 0.0013 0.0118

161 0.0011 0.0085

171 0.0010 0.0061

181 0.0009 0.0043

191 0.0008 0.0030

201 0.0007 0.0021

211 0.0006 0.0014

221 0.0006 0.0010

231 0.0005 0.0006

241 0.0004 0.0004

Table 2: Comparison of maximum error between

the numerical solution unum of the generalized

Burgers equation (1) (subject to the initial pro-

file (102)) with asymptotic solution uasy given in

(62) and the solution ulin given in (17) of the lin-

ear partial differential equation (18) at different

times when ε = 0.05, j = 1.
t ‖unum − uasy‖∞ ‖unum − ulin‖∞
2 0.0662 0.1664

3 0.0375 0.1114

4 0.0239 0.0759

5 0.0157 0.0525

6 0.0105 0.0368

7 0.0072 0.0262

8 0.0051 0.0188

9 0.0038 0.0136

10 0.0029 0.0099

11 0.0022 0.0073

12 0.0018 0.0053

13 0.0015 0.0039

14 0.0012 0.0029

15 0.0011 0.0021

16 0.0009 0.0015

17 0.0008 0.0011

18 0.0007 0.0008

§5 Conclusions

In this paper, we have studied the large time asymptotics for the periodic solutions of two

generalized Burgers equations (1)-(2) satisfying conditions (3)-(5). We have obtained asymp-

totic solutions via a perturbative approach. Further the forms of the zeroes x̃0(t) of the solu-

tions of GBE1 and GBE2 for large time have been found. The forms for x̃0(t) for GBE1 and

GBE2 generalize the form used for the zero of the solution of the modified Burgers equation

ut + u2ux = εuxx. An interesting observation was that the asymptotic solution for GBE1 with

j = 1 contained the exponential integral Ei(t). We also have solved numerically the general-

ized Burgers equations (1)-(2) with initial conditions (101), (102) and boundary conditions (5)

using a finite difference scheme due to Dawson [5]. The agreement between the asymptotic and

numerical solutions is quite good for the large time we have studied.

Our study may help the construction or analysis of the large time asymptotics of periodic

solutions of the more general nonlinear partial differential equations of the form

ut + f(u)ux + g(t, u) = εuxx,

subject to the initial-boundary conditions (3)-(5). To illustrate this point, let us consider the
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following nonlinear partial differential equations:

ut + (eu − 1)ux = εuxx, (104)

ut + sin2(u)ux = εuxx, (105)

ut + sin2(u)ux +
ju

2t
= εuxx. (106)

As u → 0, equations (104) and (105)-(106) may be approximated by the generalized Burgers

equations GBE2 with a = 1, b = 1/2 and GBE1, respectively. Our numerical study shows that

the asymptotic solution (99) with a = 1, b = 1/2 of GBE2, the asymptotic solution (56) with

j = 0 of GBE1, the asymptotic solution (56) of GBE1, respectively, agree quite well with the

solutions of (104)-(106) subject to the initial condition u0(x) = sinx for large time. In this

paper, we have presented only the results for the equation (106) when j = 0.1, ε = 0.01. One may

refer to Smriti [22] for a detailed numerical study of equations (104)-(105) and comparison of

the numerical solutions of the partial differential equations (104)-(105) with the corresponding

large time asymptotic solutions.

Table 3: Comparison of maximum error between the numerical solution unum of the generalized Burgers
equation (2) (subject to the initial profile (102)) with asymptotic solution uasy given in (99) and the
solution ulin given in (64) of the linear partial differential equation (65) at different times when a = 1,
b = 1, ε = 0.25.

t ‖unum − uasy‖∞ ‖unum − ulin‖∞
1 0.1163 0.2905
2 0.0638 0.2093
3 0.0381 0.1302
4 0.0240 0.0790
5 0.0161 0.0481
6 0.0112 0.0298
7 0.0080 0.0187
8 0.0058 0.0119
9 0.0042 0.0077
10 0.0030 0.0050
11 0.0022 0.0033
12 0.0015 0.0021
13 0.0010 0.0013
14 0.0005 0.0008
15 0.0002 0.0004
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