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A new test on the conditional capital asset pricing model

LI Xia-fei1 CAI Zong-wu2,1 REN Yu1,∗

Abstract. Testing the validity of the conditional capital asset pricing model (CAPM) is a

puzzle in the finance literature. Lewellen and Nagel[14] find that the variation in betas and

in the equity premium would have to be implausibly large to explain important asset-pricing

anomalies. Unfortunately, they do not provide a rigorous test statistic. Based on a simulation

study, the method proposed in Lewellen and Nagel[14] tends to reject the null too frequently.

We develop a new test procedure and derive its limiting distribution under the null hypothesis.

Also, we provide a Bootstrap approach to the testing procedure to gain a good finite sample

performance. Both simulations and empirical studies show that our test is necessary for making

correct inferences with the conditional CAPM.

§1 Introduction

The capital asset pricing model (CAPM) is a cornerstone in both theoretical and empirical
finance. It states a linear relationship between the excess return of a risky asset and the beta of
that asset with respect to the market return. It is commonly assumed in the literature that the
betas of the CAPM are constant over time. Recent empirical studies provide ample evidences
against this assumption because the relative risk of a firm’s cash flow varies over the business
cycle and with the state of the economy. In other words, it is reasonable to believe that the
CAPM holds under the condition of current information sets. This implies that the conditional
CAPM should be preferred in real applications; see Jagannathan and Wang[12].

The validity of the conditional CAPM is empirically debatable in the finance literature. The-
oretically, the conditional CAPM can hold perfectly from period to period so that it can deliver
many successful asset pricing models in real applications. Following Hansen and Richard[8], a
conditional model can deliver an unconditional testable restrictions given proper modeling of
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the conditioning information. Jagannathan and Wang[12] generalize the single factor model with
time-varying loading to a multi-factor linear model and argue that the model can give a better
explanation to the size effect. Lettau and Ludvigson[13] use a consumption-wealth ratio as a
conditioning variable and find that the model performs better at explaining the cross-sectional
return variation. Santos and Veronesi[21] choose the labor income to consumption ratio as a
conditioning variable and yield a similar result. The success of the aforementioned models in
real applications can be regarded as a further evidence to support using the conditional CAPM
in real applications. However, He et al.[10] generalize the model in Harvey[9] and conclude that
the conditional CAPM captures little variation in expected returns of momentum and book-to-
market effects. Ghysels[7] shows that the conditional CAPM is often misspecified so that it leads
to an even larger pricing error than the unconditional CAPM. Bali[3] proposes to study jointly
the intertemporal and cross-sectional implications of the intertemporal CAPM (ICAPM ). Es-
sentially, he estimates the cross-sectional conditional risk-return relation with an intertemporal
stability constraint on the relative risk aversion coefficient, and the estimated market risk pre-
mium is highly significant and positive. Recently, Ang and Kristensen[2] and Li and Yang[16] use
nonparametric approach methods to estimate and test the conditional factor model. They sug-
gest that the conditional CAPM fails to explain well-known asset-pricing anomalies. Li, Su and
Xu[17] use a two-stage semiparametric approach to examine the performance of the conditional
CAPM and find some mixed results. Other recent researches include Bali and Engle[4] employ
the dynamic conditional correlation model and show that the risk premium of an ICAPM model
is significantly positive. Bali, Engle and Tang[6] use a dynamic conditional correlation approach
to model the conditional beta and find that conditional beta performs well in explaining the
cross-section of daily stock returns. Moreover, Bali and Engle[5] conclude that the conditional
CAPM can explain the value premium using the dynamic conditional correlation model.

Different from the convention in the literature that explores the significance of pricing errors,
Lewellen and Nagel[14] (hereafter, LN) provide a new method to evaluate the conditional CAPM.
Instead of modeling the conditional betas as functions of other instrumental variables, they
assume the conditional betas keep stable in a short window and can be estimated by a simple
regression in each window. They conclude that the covariance between the conditional betas
and the equity premium would have to be implausibly large to explain important asset pricing
anomalies like momentum and the value premium. They claim that the conditional CAPM
performs nearly as poorly as the unconditional one.

However, there are some limitations for the method proposed by LN. Their conclusion is
based on a simple comparison of the estimated values of two unobservable variables. Based on
their method, the conditional CAPM should be rejected if the estimated values are far away
from each other. Since the estimated values are statistics, it is not reliable to do a comparison
by simply replacing the true values with their estimators. Although the magnitudes of those
estimators are quite different as shown empirically by LN, a formal statistical test is definitely
required. The main goal of this paper is to join the current debate about the validity of the
conditional CAPM by revisiting the method proposed in LN. Based on the LN method, we
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propose a new test to check whether the covariance in betas and the equity premium is large
enough to explain important asset pricing anomalies. In this paper, we contribute to complete
the LN method by fixing the drawback and apply the new test on a larger data set including
size, B/M sorted portfolios, as well as industrial portfolios.

To highlight the importance of the hypothesis testing procedure, we conduct some simula-
tions; see Section 2.2 for the detailed settings and results. First, we assume that the data are
generated from a conditional CAPM. Then, we follow the steps in LN to estimate the variables
and do a comparison. Consequently, the frequency of inequality for those estimators (even in
magnitude) is quite high. This suggests that even if the conditional CAPM holds, there is still
a large chance that the two estimators are different in magnitude. Therefore, we suspect that
one can make a valid inference on the conditional CAPM by following the LN method.

In this paper, we construct a statistic based on the difference between the estimated variables
and derive its limiting distribution (asymptotic normality). To test its significance, we use the
Bootstrap method to compute the empirical p-value. Simulations suggest that our test has a
good size and indeed it is powerful in a finite sample performance. Empirically, to avoid the
data-snooping problem mentioned in Lo and MacKinlay[18], we test a wide variety of portfolios:
6, 25, and 100 Fama-French portfolios; 5, 10 and 30 industrial portfolios; SMB, HML, and
momentum (MOM) factors. All the data are downloaded from Kenneth French’s web site. The
findings are summarized in Table 1, which lists the numbers of the portfolios which can not

Table 1: Test results for comparison between our method and the LN method

This table reports the numbers of portfolios that fail to reject the conditional CAPM at the given significance
level. LN do not provide a formal test statistic and they only argue that the ratio of covariance between equity
premium and unconditional alpha should be close to 1. Therefore, we take it as a rejection if the value of this
ratio does not belong to [0.5, 2]. The betas are assumed to be stable within one quarter window. The data are
taken from Kenneth French’s web site and the sample period is from July 1963 to December 2014.

Our Test LN
1% 5% 10%

Fama-French 6 portfolios 3 2 2 2
Fama-French 25 portfolios 9 8 6 2
Fama-French 100 portfolios 70 55 45 13
5 industry portfolios 4 4 3 1
10 industry portfolios 6 5 5 2
30 industry portfolios 21 17 14 6
SMB, HML, MOM factors 0 0 0 0

be rejected by our testing procedure or by the method in LN. We see from Table 1 that the
numbers at different significance levels (from the second column to the forth column) by our
method are always larger than those (the last column) by the LN method. Thus, there is a
great chance that the conditional CAPM would be rejected by the LN method, while it is still
accepted by our testing procedure. In other words, the LN method tends to over-reject the null
hypothesis. This phenomenon is confirmed by our simulation study conducted in Section 2.2.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Although the conditional CAPM fails to explain the SMB, HML and MOM anomalies, it can
explain the individual portfolios reasonably well. The conditional CAPM can also explain most
of the time series variation of industry portfolio returns.

The rest of this paper is organized as follows. Section 2 briefly reviews the LN method
and illustrates its strengths and weaknesses based on a simple simulation study. Section 3
presents our new testing procedure and discusses the test statistic as well as gives its asymptotic
distribution. In Section 4, some empirical studies on Fama-French portfolios and other common
factors are reported. Section 5 is devoted to the robustness analysis and Section 6 concludes
the paper. All the mathematical proofs are relegated to the Appendix.

§2 A direct comparison method

2.1 Revisit of the LN method

The validity of the conditional CAPM usually requires two conditions to hold at the same
time. The first is that the pricing error is insignificant. This requirement has already been
extensively discussed in the finance literature. The second, as advocated by LN, is that the
unconditional pricing error is close to the covariance of the beta and the market equity premium.
Let us focus on the second condition here. The conditional CAPM can be expressed as

Ri,t = βi,tRM,t + εi,t, (1)

where Ri,t is the excess return of risky asset i, RM,t is the excess return of the market portfolio,
and the conditional beta, βi,t, is given by

βi,t = Cov(Ri,t, RM,t|It−1)/Var(RM,t|It−1),

where It−1 is the information set up to time t − 1. We use γt and σt to denote the conditional
equity premium and the standard error of the market factor, and γ and σM to denote the
corresponding unconditional values. Further, βu

i is the corresponding unconditional beta. We
also define the unconditional pricing error (or unconditional alpha) as αu

i ≡ E[Ri,t]− βu
i γ. LN

show that if the conditional CAPM holds, then the following equation holds

αu =
[
1 − γ2

σ2
M

]
Cov(βt, γt) − γ

σ2
M

Cov
[
βt, (γt − γ)2

] − γ

σ2
M

Cov(βt, σ
2
t ), (2)

which is the same as (3) of LN. Note that in the above equation, the subscript i is dropped
because this equation holds for every asset.

Based on the empirical analysis, LN argue that compared with the first term on the right-
hand side of (2), the last two terms on the right-hand side of (2) are negligible. Since γ2/σ2

M is
usually very small, whether (2) holds or not is equivalent to whether αu ≈ Cov(βt, γt). There-
fore, we only need to estimate both αu and Cov(βt, γt), respectively. To this end, LN suggest
splitting the whole time series into short windows and estimating the conditional moments of
each window. Then, they compare the left-hand side with the right-hand side to see if they are
close enough.

However, this procedure has a drawback. Both estimators for the left-hand side and the
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right-hand side in (2) are random variables. The direct comparison, even in magnitude, of two
estimated values is not reliable since they have variations even in large sample. The test size
of their procedure can be severely distorted. On the other hand, to make an inference, LN
suggest comparing the estimated value of ratio δ = Cov(βt, γt)/αu to one or not. However, αu

is commonly small so the estimate for δ can be very volatile. Therefore, the estimated value for
δ might not be reliable. This drawback, unfortunately, has not been addressed in the finance
literature and it is illustrated clearly by the following simulation.

2.2 An illustrative example

Here we conduct a simple simulation to argue that there exists the aforementioned drawback
that the LN method tends to over-rejection. In our simulation setting, the conditional CAPM
is a true data generating process (DGP). Then, we follow the steps in LN to compare two sides
of (2). Suppose the whole sample contains T daily observations. We divide the whole sample
into H short windows so that there are w observations in each window, where T = w H . The
h-th window is denoted by Wh = [hw+1, (h+1)w], from time hw+1 to (h+1)w. Following the
assumptions in LN, we keep the conditional βt constant in each short window, while it varies
across the windows. Then, we generate βh by βh = β + ηh, where h = 1, 2, . . . , H, and ηh is
the cross-window disturbance. So, for the beta observed at time t, βt is fixed for any t ∈ Wh

and β ≡ E[βt].
Next, the excess return of market portfolio is generated by RM,t = γ + uh + vt for any

t ∈ Wh, where uh is the cross-window disturbance and vt is the daily disturbance. Finally,
we generate the excess return for all individual stocks based on the conditional CAPM as
Rt = βtRM,t + εt, where εt is the noise. We calibrate γ = 0.00183 from the time series mean
of market excess return from July 1963 to December 2009. We set the idiosyncratic standard
deviation as σε = 0.0083, which is estimated from the Fama-French 25 size and B/M (book-to-
market) portfolios. The simulated unconditional mean β is evenly spanned from 0.5 to 2 across
10 assets. For the purpose of robustness check, we consider the following 6 cases:

C1. Cross-window disturbances in conditional betas and excess market returns uh and ηh

follow a multivariate normal distribution, with ση = 0.7071, σu = 0.0012, and the cor-
relation coefficients are randomly draw from U [−1, 1]. We generate vt ∼ i.i.d. N(0, σ2

v)
with σv = 0.0098 which is estimated from the real market excess return.

C2. Data are generated with the same parameter set as in C1, except the correlation coeffi-
cients are set to 0.

C3. Cross-window disturbances in conditional betas and excess market returns uh and ηh are
generated independently, while uh is generated from i.i.d. random numbers from student-t
distribution with degrees of freedom (df) of 4, then multiply by a constant of 0.00084 to
scale it to have the same standard deviation as in C1. The within window disturbances
ηh and vt are generated from the same parameters as in C1.
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C4. We set uh = 0 and all the other parameters are the same as in C1.

C5. We set uh = 0 and generate vt by drawing random numbers from i.i.d. student-t with
degrees of freedom of 4, then multiply by 0.0069 to scale it to have the same standard
deviation as in C1.

C6. We set RM,t using the real market data extracted from French’s web site. We generate β

and ε from the same parameters set as in C1.

Last, we simulate 10 portfolios with different βs as in each of the above description and follow
the procedure in LN to estimate the two sides of (2). We repeat the simulation 1000 times and
compute the results. According to LN, (2) reduces to

αu ≈ Cov(βt, γt) (3)

and δ = Cov(βt, γt)/αu is approximately equal to 1. Table 2 summarizes the simulation results
for δ̂. The results in Table 2 suggest that even when the true DGP is the conditional CAPM,

Table 2: Results of direct comparison

This table reports the mean, median and standard deviation (std) of the estimated value for the ratio δ among
1000 replications, where γt and ηt are generated from 6 different distributions as specified in C1 - C6. Parameters
σ2

u, σ2
η , and σ2

v are calculated from real data. The window size is quarterly, namely 63 trading days in the
simulation. The whole sample is 40 years, close to our real data. We report the unconditional regression results
over the whole sample time series. Then, we estimate the conditional α, β and equity premium, and we report
the results of δ̂ for each portfolio. Note that δ̂ should be very close to 1 if the LN method is valid.

Model Portfolio 1 2 3 4 5 6 7 8 9 10
Mean 1.012 0.985 1.019 1.012 0.971 1.011 1.011 1.030 1.013 1.010

C1 Median 1.010 1.008 1.010 1.010 1.003 1.010 1.011 1.008 1.013 1.010
Std 0.068 1.384 0.249 0.084 1.678 0.022 0.032 0.426 0.074 0.022

Mean 0.165 0.466 1.330 1.617 0.804 0.478 0.457 -0.873 -9.556 0.756
C2 Median 0.625 0.565 0.585 0.617 0.551 0.564 0.560 0.582 0.542 0.529

Std 23.211 11.016 17.570 22.031 12.546 11.768 6.224 48.246 347.047 36.340
Mean 0.846 0.963 1.517 1.016 3.446 -0.061 0.867 0.717 -0.036 0.932

C3 Median 0.986 0.985 0.966 0.993 0.967 1.008 0.986 1.002 0.974 0.979
Std 4.051 3.461 27.749 3.349 73.193 27.274 5.905 9.672 30.841 10.707

Mean 0.788 0.868 -0.592 1.537 0.098 -2.202 -0.530 -0.292 2.377 0.593
C4 Median 0.450 0.386 0.416 0.381 0.407 0.458 0.421 0.403 0.437 0.454

Std 6.267 11.149 33.092 50.496 10.276 67.790 24.025 12.633 30.158 11.740
Mean -0.153 1.323 0.588 1.118 -27.976 0.216 0.789 -22.515 -0.386 0.860

C5 Median 0.386 0.399 0.425 0.382 0.430 0.394 0.430 0.411 0.410 0.403
Std. 27.347 37.035 7.918 31.488 859.730 33.903 18.869 718.871 18.887 14.356
Mean 0.521 -0.144 -0.166 1.673 -4.191 0.118 0.185 0.321 61.193 0.346

C6 Median 0.439 0.423 0.479 0.406 0.412 0.384 0.370 0.447 0.402 0.477
Std 16.514 26.119 14.347 44.339 140.918 7.851 15.327 6.385 1937.700 36.760

there is still a large chance the two sides of (2) are not close to each other. In other words,
δ is far away from 1. Moreover, we find that δ has a large variance for all the DGP except
case C1. Thus, the inequality of the estimated values of (2) can not be regarded as a concrete
evidence against the conditional CAPM. This implies that the testing procedure in LN tends to
over-reject the true model. Therefore, we need to conduct a formal statistical testing procedure
in order to make rigorous statistical inferences.
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§3 A new test based on bootstrap method

3.1 Testing procedure

One of main difficulties in testing conditional asset pricing models is how to deal with
the true conditional information. Here, for simplicity, we do not impose any exogenous macro
variables. Instead, we focus on the time series patterns of the asset returns and equity premium.
The model is assumed to be Rt = βtRM,t + εt, where Rt denotes excess return, RM,t is the
excess market return, and βt is the factor loading. Here, we use t to denote the observation of
each day, and h to denote the index of each window. Moreover, we assume that RM,t and βt

follow
RM,t = γ + ut + vt and βt = β + ηt,

where ut = uh and ηt = ηh for any t ∈ Wh. This means ut and ηt are fixed within each window.
Also, ηt and ut are correlated, the variables ut, vt, εt are mutually independent, and ηt, vt, εt

are also mutually independent.
We assume that the factor loading keeps constant within each window while varies between

windows. The decomposition of RM,t is for calculation convenience and can be relaxed. Within
the h-th window, we define

v̄h ≡ 1
w

∑
t∈Wh

vt, ε̄h ≡ 1
w

∑
t∈Wh

εt, R̄M,h ≡ 1
w

∑
t∈Wh

RM,t = γ + uh + v̄h,

and
R̄h ≡ 1

w

∑
t∈Wh

Rt = βh(γ + uh + v̄h) + ε̄h,

where Wh ≡ {j : j ∈ [w(h − 1) + 1, wh]}. Then, we run the regression within-window to get
the conditional alpha and beta for each window. They can be expressed as

β̂h = Covh(Rt, RM,t)/Varh(RM,t),

where Covh(.) and Varh(.) denote the estimates of covariance and variance for the sample in the
h-th window, Wh, respectively. Then, α̂h = R̄h − β̂hR̄M,h and the estimate of γh is γ̂h = R̄M,h.

Next, we estimate the unconditional model. The factor loading in the unconditional model
is

β̂u = Covw(Rt, RM,t)/Varw(RM,t),
where Covw(.) and Varw(.) denote the estimation over the whole sample. Also, the uncondi-
tional alpha is α̂u = R̄ − β̂uR̄M . Thus, the test statistic is formulated as

QT ≡ α̂u −
[
1 − γ̂2

σ̂2
M

]
Ĉov(β̂h, γ̂h) +

γ̂

σ̂2
M

Ĉov
[
β̂h, (γ̂h − γ̂)2

]
+

γ̂

σ̂2
M

Ĉov(β̂h, s2
v,h), (4)

where s2
v,h is the sample analog of the variance of vt ∈ Wh. By assuming that H = T/w → ∞,

when T → ∞, the asymptotic normality of QT can be established as√
T/w QT /σQ

d−→ N(0, 1), (5)

where σQ is the asymptotic standard deviation of
√

T/w QT . The detailed proof of (5) is
provided in the Appendix.

It is clear that under the null hypothesis that the conditional CAPM is the true DGP, QT
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should be statistically insignificant. Since the asymptotic variance of QT is complicated and
contains many unobserved parameters, the p-value implied by the asymptotic distribution is
not easily tabulated, in particular, when the sample size is small. To circumvent this difficulty
and to make computing simple, we propose using a direct Bootstrap method to obtain the p-
value of QT by following the Bootstrap procedure proposed by Horowitz[11] and MacKinnon[19],
described as below.

S1. Run a two-step regression to get the statistic QT and all the other estimators.

S2. Calculate the re-centered η∗
h and u∗

h for between-window and v∗t and ε∗t for within-window.
Then, resample η∗

h and u∗
h pairwise, and resample v∗t and ε∗t pairwise within-window.

S3. Impose the constraint that the conditional alpha is zero and generate R∗
t . Then, compute

Q∗
Tj .

S4. Repeat S2 and S3 for a large number of the Bootstrap replications, say B = 499 times.
Then, use QT and Q∗

Tj to calculate the p-value p̂(QT ). According to the equal-tail Boot-
strap p-value equation, the p-value is computed based on

p-value = 2 min

⎛
⎝ 1

B

B∑
j=1

I(Q∗
Tj ≤ QT ),

1
B

B∑
j=1

I(Q∗
Tj > QT )

⎞
⎠ ,

where I(A) is the indicator function of event A.

3.2 Size and power based on simulations

To illustrate the finite sample performance of the proposed test, we conduct some simulations
and report the empirical size and power of the test. The simulation procedure is as follows.
First, we calculate the parameters including the mean and variance from real data taken from
French’s web site. Then we simulate excess market return and beta using the parameters
calculated from the real data. According to RM,t = γ + uh + vt for any t ∈ Wh, we choose
γ = 0.000183 and simulate uh and vt from i.i.d normal distribution with mean zero and a
variance of σu = 0.0012 and σv = 0.0098, respectively. We simulate βh from βh = β + ηh,
where β is randomly generated from U(0, 2), and ηh is generated from N(0, 0.5). All the above
parameters are estimated from real data. Next, we simulate excess returns using the excess
market return and beta. Last, we apply our test to the simulated data. We repeat these steps
1000 times, and calculate the rejection frequency. The results are reported in Table 3. We
find that the empirical sizes are close to the nominal levels when the time period is above 40
quarters, i.e., 10 years. This concludes that the proposed test can deliver the right test size.

As for the power of our test, we also validate it through simulations. We add pricing errors
αc to the portfolio returns of each day while the other settings are kept the same as in the
simulation calculating empirical size. Table 4 shows that when the pricing errors are set to

According to Paparoditis and Politis[20], estimating the residuals under imposing the test restrictions may
cause a loss of power. Our simulation results also show the loss of power if we impose the restriction before
estimating. So, we impose the restriction after we calculate the residuals.
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Table 3: Size of the our test.

This table shows the empirical size of our test. Excess market returns and betas are simulated based on the
parameters estimated from real data. The window size is w = 63 trading days. The whole sample period contains
H quarters. so that T = 63 H. We calculate the ratio of rejections in the simulations to obtain empirical size.

1% 5% 10%
H = 40 0.013 0.051 0.101
H = 80 0.015 0.062 0.112
H = 160 0.012 0.064 0.126
H = 320 0.013 0.066 0.121

6.3% annually, our test has a power of 0.557 as the sample size goes to 160 quarters or 40 years.
The power goes to 0.986 when the pricing error goes to 12.6% annually. This implies that the

Table 4: Power of the our test

This table reports the empirical power under nominal size 1% and 5%. The sample period T is in quarters and
αc denotes the anualized pricing error .

H = 40 H = 80 H = 160 H = 320
αc = 6.3%
1% 0.058 0.142 0.288 0.607
5% 0.188 0.321 0.557 0.820
αc = 12.6%
1% 0.272 0.565 0.905 0.997
5% 0.517 0.832 0.986 1.000
αc = 25.2%
1% 0.896 0.999 1.000 1.000
5% 0.981 0.999 1.000 1.000

proposed test is indeed quite powerful and it can be used in real applications.

§4 Empirical analysis

In this section, we use the proposed test to analyze U.S. equity data and report our empirical
findings. Also, we compare our conclusions with those in the literature.

4.1 Description of data

We use the daily data from Kenneth French’s web site. The sample period is from July 1963
to December 2014. The market return in the model is the value-weighted return on all NYSE,
AMEX and NASDAQ stocks from CRSP. The risk-free rate is represented by the one-month
Treasury bill rate.

We implement our test on a wide variety of portfolios: 6, 25, and 100 Fama-French size-B/M
portfolios; 5 and 10 industry portfolios; SMB, HML, and MOM factors. Extending the test to
several portfolios rather than only to the conventional SMB, HML, and MOM factors has at
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least two advantages. The first is to avoid the data-snooping problem pointed out by Lo and
MacKinlay[18]. Another is that it enhances robustness; see Lewellen, Nagel and Shanken[15].
The Fama-French portfolios are sorted by their size (S) and book-to-market ratio (B/M). The
industry portfolios are constructed based on the four-digit standard industry classification (SIC)
code. The industry portfolios can be divided into 5, 10 or 30 industries respectively according
to different criteria. The SMB, HML and MOM portfolios are the factor portfolios mimicking
size effect, book-to-market effect and momentum strategies, respectively. We assume the betas
keep stable within a quarterly window.

4.2 Main findings

4.2.1 Fama-French portfolios

To compare our results with those in Lewellen and Nagel[14], we conduct our test on the
Fama-French 25 portfolios. We set the window size equal to one quarter and follow the LN
method to calculate α̂u and Ĉov(β̂h, γ̂h). Afterwards, we compute the estimators for the two
sides of equation (2) and for QT . Then we use the Bootstrap procedure to obtain the corre-
sponding p-value for testing the null hypothesis.

Table 5 reports the results. The first column indicates the order of the portfolios. The
portfolios are sorted by size (S) and book-to-market ratio (B/M). The unconditional pricing
error, α̂u, with its standard error and t-statistic are reported in the next three columns. The
covariance between the conditional betas and equity premiums, Ĉov(β̂h, γ̂h), and its ratio over
the pricing error, δ̂ = Ĉov(β̂h, γ̂h)/α̂u, are shown in the fifth and the sixth columns, respectively.
The last two columns summarize the test statistic QT and its corresponding p-values.

From Table 5, we see that under the 5% significance level, there are 8 of the 25 portfolios for
which the null hypothesis can not be rejected, while by looking at the ratios of Cov(βh, γh) over
αu, there are only 2 portfolios that lie in the interval [0.5, 2]. That means that for portfolios
S2/B2, S4/B1, S5/B2, S5/B3, S5/B4 and S5/B5, comparison of the ratios of Cov(βh, γh) over
αu leads to the conclusion that the conditional CAPM does not explain their time series pricing
errors, while it is just opposite according to our test.

We also consider the Fama-French 6 portfolios and the Fama-French 100 portfolios. The
results are shown in Tables 6 and 7, respectively.

For the Fama-French 6 portfolios, the results are consistent with LN. Two out of six portfolios
are not be rejected. However, for the Fama-French 100 portfolios, 55 portfolios pass our test at
the 5% significant level, while the method in LN suggests that only 13 portfolios are supported
by the conditional CAPM. Moreover, it is very interesting to see that the portfolios passing
the LN criterion have a high p-value in our test. That means that the LN method rejects the

For details of industry classification, please refer to Professor Kenneth French’s web site.
We also report the monthly window results in the appendix. The choice of window size has minor impact

on the results. Theoretically, an optimal window size could be developed according to certain criterion. Here
we just use quarterly window for its economic significance. We thank the anonymous referee for pointing out
the importance of window size selection.
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Table 5: Estimation and testing results for Fama-French 25 portfolios

This table summarizes the estimation and testing results for the Fama-French 25 Portfolios. The first column
indicates the order of the portfolios. The unconditional pricing error, α̂u, with its standard error and t-statistic
are reported in the next three columns. The covariances between the conditional betas and equity premium,

Ĉov(β̂h, γ̂h), and the corresponding ratio over the pricing errors are shown in the fifth and the sixth columns.
The last two columns summarize the statistic for our test and its p-value.

Portfolio α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
S1/B1 -0.0211 0.0070 -3.0013 -0.0072 0.3396 -0.0147 0.0000
S1/B2 0.0090 0.0059 1.5123 -0.0026 -0.2878 0.0110 0.0000
S1/B3 0.0142 0.0052 2.7058 0.0003 0.0218 0.0134 0.0000
S1/B4 0.0236 0.0051 4.6199 0.0007 0.0305 0.0229 0.0000
S1/B5 0.0285 0.0055 5.2032 0.0013 0.0451 0.0271 0.0000
S2/B1 -0.0090 0.0059 -1.5273 -0.0061 0.6710 -0.0043 0.2111
S2/B2 0.0064 0.0048 1.3122 -0.0002 -0.0376 0.0063 0.0503
S2/B3 0.0187 0.0047 4.0051 0.0001 0.0066 0.0189 0.0000
S2/B4 0.0196 0.0047 4.1547 0.0016 0.0820 0.0187 0.0000
S2/B5 0.0207 0.0058 3.5635 0.0015 0.0722 0.0196 0.0000
S3/B1 -0.0065 0.0051 -1.2735 -0.0053 0.8276 -0.0016 0.8744
S3/B2 0.0107 0.0040 2.6974 -0.0007 -0.0611 0.0113 0.0000
S3/B3 0.0138 0.0040 3.4518 -0.0008 -0.0576 0.0149 0.0000
S3/B4 0.0187 0.0043 4.3719 0.0017 0.0905 0.0173 0.0000
S3/B5 0.0253 0.0051 4.9610 0.0009 0.0341 0.0244 0.0000
S4/B1 0.0003 0.0040 0.0733 -0.0026 -8.9447 0.0026 0.0704
S4/B2 0.0019 0.0033 0.5884 -0.0008 -0.4145 0.0032 0.0201
S4/B3 0.0091 0.0038 2.4289 0.0004 0.0425 0.0094 0.0000
S4/B4 0.0171 0.0041 4.2047 0.0022 0.1280 0.0146 0.0000
S4/B5 0.0158 0.0053 2.9896 0.0003 0.0180 0.0152 0.0000
S5/B1 -0.0025 0.0030 -0.8450 0.0005 -0.2103 -0.0042 0.0000
S5/B2 0.0013 0.0030 0.4284 0.0023 1.8292 -0.0015 0.1809
S5/B3 0.0003 0.0038 0.0825 0.0015 4.7965 -0.0008 0.6935
S5/B4 0.0049 0.0044 1.1331 0.0021 0.4218 0.0031 0.2915
S5/B5 0.0063 0.0056 1.1201 0.0040 0.6367 0.0016 0.5628

Table 6: Estimation and testing results for Fama-French 6 portfolios

This table summarizes the estimation and testing results for the Fama-French 6 Portfolios. The first column
indicates the order of the portfolios. They are sorted by size (S) and book-to-market ratio (B/M). The uncon-
ditional pricing error, α̂u, with its standard error and t-statistic are reported in the next three columns. The

covariance between the conditional betas and equity premium, Ĉov(β̂h, γ̂h), and its ratio over the pricing error
are shown in the fifth and the sixth columns. The last two columns summarize the statistic for our test and its
p-value.

Portfolio α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
S1/B1 -0.0067 0.0052 -1.2961 -0.0051 0.7614 -0.0024 0.2613
S1/B2 0.0169 0.0042 4.0390 0.0000 0.0029 0.0169 0.0000
S1/B3 0.0237 0.0047 4.9988 0.0016 0.0662 0.0223 0.0000
S2/B1 -0.0020 0.0021 -0.9337 0.0001 -0.0585 -0.0030 0.0000
S2/B2 0.0023 0.0026 0.8888 0.0018 0.7491 0.0009 0.3719
S2/B3 0.0097 0.0042 2.3040 0.0027 0.2796 0.0072 0.0101
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Table 7: Estimation and testing results for Fama-French 100 portfolios
This table summarizes the estimation and testing results for the Fama-French 100 Portfolios. We only report the
results of the portfolios which have different testing results for the LN procedure and for our testing procedure. The
first column indicates the order of the portfolios. They are sorted by size (S) and book-to-market ratio (B/M). The
unconditional pricing error, α̂u, with its standard error and t-statistic are reported in the next three columns. The

covariance between the conditional beta and risk premium, Ĉov(β̂h, γ̂h), and its ratio over the pricing error are shown
in the fifth and the sixth columns. The last two columns summarize the statistic for our test and its p-value.

Portfolio α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
S1/B2 -0.0134 0.0076 -1.7746 -0.0072 0.5369 -0.0075 0.5427
S1/B3 0.0019 0.0073 0.2662 -0.0053 -2.7304 0.0064 0.4221
S1/B4 0.0136 0.0069 1.9750 -0.0034 -0.2530 0.0158 0.0603
S1/B5 0.0079 0.0064 1.2268 -0.0031 -0.3991 0.0099 0.0603
S2/B2 -0.0099 0.0074 -1.3321 -0.0069 0.6903 -0.0037 0.4322
S2/B3 -0.0026 0.0071 -0.3590 -0.0028 1.0955 -0.0004 0.8844
S2/B4 -0.0035 0.0067 -0.5219 -0.0029 0.8259 -0.0007 0.9045
S2/B5 0.0056 0.0064 0.8834 -0.0014 -0.2451 0.0076 0.2010
S3/B2 -0.0004 0.0075 -0.0508 -0.0060 15.7271 0.0053 0.6834
S3/B3 0.0034 0.0067 0.5096 -0.0000 -0.0132 0.0036 0.3015
S3/B4 0.0014 0.0065 0.2222 -0.0001 -0.0820 0.0013 0.8241
S3/B5 0.0077 0.0062 1.2372 -0.0011 -0.1456 0.0093 0.0704
S3/B7 0.0087 0.0061 1.4126 0.0014 0.1608 0.0083 0.1206
S4/B1 -0.0162 0.0076 -2.1493 -0.0078 0.4785 -0.0112 0.1106
S4/B2 -0.0043 0.0068 -0.6284 -0.0012 0.2832 -0.0042 0.5327
S4/B3 -0.0054 0.0063 -0.8573 -0.0023 0.4214 -0.0038 0.3417
S4/B4 0.0051 0.0061 0.8333 -0.0014 -0.2728 0.0068 0.3719
S4/B10 0.0005 0.0090 0.0567 -0.0017 -3.3608 0.0046 0.6332
S5/B1 -0.0118 0.0071 -1.6560 -0.0065 0.5506 -0.0075 0.2111
S5/B2 -0.0043 0.0062 -0.6929 -0.0029 0.6605 -0.0012 0.7638
S5/B3 0.0062 0.0060 1.0310 -0.0009 -0.1423 0.0074 0.2312
S5/B5 0.0055 0.0056 0.9705 -0.0016 -0.2896 0.0074 0.3417
S5/B7 0.0134 0.0061 2.2057 0.0036 0.2660 0.0107 0.0603
S6/B2 0.0002 0.0057 0.0298 -0.0043 -24.8443 0.0053 0.2714
S6/B3 0.0039 0.0055 0.7167 -0.0008 -0.1981 0.0050 0.2010
S6/B4 0.0064 0.0053 1.2147 -0.0012 -0.1856 0.0071 0.0603
S7/B1 -0.0021 0.0061 -0.3359 -0.0029 1.4226 -0.0014 0.6533
S7/B2 0.0025 0.0052 0.4826 -0.0028 -1.1134 0.0050 0.0804
S7/B3 0.0021 0.0048 0.4418 -0.0014 -0.6381 0.0040 0.1508
S7/B4 -0.0013 0.0050 -0.2532 -0.0023 1.7970 0.0023 0.4422
S7/B5 0.0025 0.0052 0.4738 -0.0004 -0.1526 0.0045 0.3116
S7/B8 0.0114 0.0059 1.9244 0.0002 0.0170 0.0117 0.0503
S8/B1 -0.0039 0.0056 -0.6898 -0.0014 0.3667 -0.0038 0.3719
S8/B2 -0.0018 0.0045 -0.4046 -0.0019 1.0171 0.0001 0.8643
S8/B3 0.0008 0.0048 0.1736 -0.0020 -2.4011 0.0032 0.1005
S8/B4 -0.0067 0.0051 -1.3027 -0.0010 0.1489 -0.0045 0.0804
S8/B6 0.0037 0.0054 0.6935 0.0001 0.0285 0.0048 0.3015
S8/B9 0.0092 0.0068 1.3430 -0.0006 -0.0678 0.0103 0.1106
S9/B1 -0.0061 0.0050 -1.2290 -0.0010 0.1646 -0.0058 0.1709
S9/B2 -0.0019 0.0042 -0.4484 -0.0018 0.9571 0.0006 0.9447
S9/B3 -0.0001 0.0042 -0.0130 -0.0021 38.1143 0.0027 0.3920
S9/B4 0.0051 0.0046 1.1115 0.0014 0.2769 0.0042 0.1608
S9/B5 0.0064 0.0047 1.3621 0.0013 0.2038 0.0059 0.2211
S9/B6 0.0049 0.0048 1.0140 0.0007 0.1476 0.0036 0.4523
S9/B8 0.0084 0.0050 1.6633 0.0011 0.1350 0.0069 0.2412
S9/B9 0.0118 0.0061 1.9190 0.0005 0.0457 0.0106 0.0503
S10/B2 -0.0001 0.0039 -0.0139 0.0013 -23.9112 -0.0022 0.5628
S10/B3 0.0027 0.0044 0.6234 0.0027 0.9909 -0.0010 0.7437
S10/B4 -0.0016 0.0048 -0.3425 0.0009 -0.5559 -0.0014 0.5829
S10/B5 -0.0091 0.0054 -1.6862 -0.0008 0.0833 -0.0071 0.0603
S10/B6 -0.0012 0.0053 -0.2267 0.0027 -2.2538 -0.0036 0.3819
S10/B7 0.0011 0.0058 0.1893 0.0010 0.9064 0.0002 0.8241
S10/B8 -0.0055 0.0072 -0.7656 -0.0015 0.2683 -0.0012 0.7739
S10/B9 0.0042 0.0087 0.4846 0.0032 0.7708 0.0021 0.7638
S10/B10 -0.0002 0.0113 -0.0170 0.0037 -19.4032 -0.0056 0.6332



LI Xia-fei, CAI Zong-wu, REN Yu. A new test on the conditional CAPM 175

conditional CAPM too often, as revealed by our simulation results.

4.2.2 SMB, HML, MOM portfolios

We also apply the test to the SMB, HML, and MOM factors portfolios. The first column in
Table 8 reports the unconditional CAPM regression results. The p-value of the unconditional

Table 8: Estimation and testing results for Fama-French factors

This table summarizes the estimation and testing results for the Fama-French three factor portfolios. The first
column indicates the portfolio. The unconditional pricing error, α̂u, with the standard error and t-statistic
are reported in the next three columns. The covariance between the conditional beta and equity premium,

Ĉov(β̂h, γ̂h), and its ratio over the pricing error are shown in the fifth and the sixth columns, respectively. The
last two columns summarize the statistic for our test and its p-value.

Portfolio α̂u se(α̂u) t-stat. p-value Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
SMB 0.0079 0.0046 1.7051 0.0913 -0.0026 -0.3285 0.0105 0.0000
HML 0.0217 0.0044 4.8833 0.0000 0.0046 0.2121 0.0181 0.0000
MOM 0.0333 0.0070 4.7845 0.0000 -0.0000 -0.0003 0.0292 0.0000

alpha for the SMB factor is 0.0913, which means the unconditional alpha is insignificant at 5%
level, while both of the other two unconditional alphas are significantly not equal to zero. The
findings are consistent with several empirical studies in the literature, such as LN and Ang and
Chen[1]. The size effect is not statistically significant either, while neither HML nor MOM can
be explained by the original unconditional CAPM.

To test the conditional CAPM statistically, we use the Bootstrap procedure as proposed
above. The last two columns in Table 8 report the statistic and its p-value, respectively. The
results somewhat support the findings in LN. Clearly, the variation of the conditional beta is
too small to explain the pricing error. The unconditional alpha of the SMB factor is about
0.0079% daily, which is not statistically significant, while the numbers increase to 0.0217% and
0.0333% for the HML and MOM factors, and both are significantly not zero at 5% level. This
provides a strong evidence to support value effect and momentum effect. The p-values in Table
8 are all less than 5%. This result is consistent with the finding in LN that the conditional
CAPM fails to explain the SMB, HML, and MOM factors.

4.2.3 Industry portfolios

We also want to check whether the conditional CAPM can explain the returns of industry
portfolios. The results are reported in Tables 9 and 10, respectively, from which we see that,
for most industry portfolios, the unconditional alphas and covariances between beta and the
market premium are not close to each other. Most of the ratios lie between −30% and 30%.
That means that for those portfolios, the estimated covariance can not explain the unconditional
alpha. But according to our Bootstrap test QT , we can not reject the conditional CAPM for
more than half of these portfolios. Another empirical finding worth noting is that several
industry portfolios have insignificant unconditional pricing errors while have significant QT .
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Industry portfolios are considered not very helpful in asset pricing test since the simple CAPM
seemly explain the time-series variation quit well in the literature. But out test suggest that
even the conditional CAPM under our assumptions can not explain the time-series variation
pattern of several industry portfolios. We should look into the time-series variation of return
and covariance more carefully.

Table 9: Estimation and testing results for 5 industry portfolios

This table summarizes the estimation and testing results for 5 industry portfolios. The first column indicates
the portfolios. The unconditional pricing error, α̂u, with its standard error and t-statistic are reported in the

next three columns. The covariance between the conditional betas and equity premium, Ĉov(β̂h, γ̂h), and its
ratio over the pricing error are shown in the fifth and sixth columns. The last two columns summarize the
statistic for our test and its p-value.

Industry α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
Cnsmr 0.0066 0.0035 1.9034 0.0025 0.3751 0.0024 0.1709
Manuf 0.0046 0.0035 1.2905 0.0003 0.0695 0.0043 0.0000
HiTec -0.0032 0.0047 -0.6788 -0.0001 0.0364 -0.0032 0.4221
Hlth 0.0113 0.0059 1.9174 0.0011 0.1010 0.0081 0.0503
Other -0.0008 0.0038 -0.2174 -0.0006 0.7614 0.0007 0.5528

Table 10: Estimation and testing results for 10 industry portfolios

This table summarizes the estimation results for 10 industry portfolios. The first column indicates the portfolios.
The unconditional pricing error, α̂u, with its standard error and t-statistic are reported in the next three columns.

The covariance between the conditional betas and equity premium, Ĉov(β̂h, γ̂h), and its ratio over the pricing
error are shown in the fifth and sixth columns. The last two columns summarize the statistic for our test and
its p-value.

Industry α̂u se(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
NoDur 0.0143 0.0044 3.2791 0.0031 0.2137 0.0098 0.0000
Durbl -0.0057 0.0066 -0.8622 0.0045 -0.7934 -0.0110 0.0000
Manuf 0.0030 0.0032 0.9095 0.0012 0.3979 0.0012 0.4925
Enrgy 0.0103 0.0081 1.2706 -0.0001 -0.0065 0.0109 0.0000
HiTec -0.0024 0.0064 -0.3692 -0.0003 0.1310 -0.0035 0.5126
Telcm 0.0019 0.0060 0.3196 0.0013 0.6764 0.0021 0.3618
Shops 0.0066 0.0048 1.3801 0.0008 0.1280 0.0047 0.3417
Hlth 0.0113 0.0059 1.9174 0.0011 0.1010 0.0081 0.0402
Utils 0.0064 0.0057 1.1272 -0.0011 -0.1709 0.0083 0.0000
Other -0.0008 0.0038 -0.2174 -0.0006 0.7614 0.0007 0.4925

§5 Robustness analysis

To check the robustness of the testing results based on our testing procedure, we also
perform the proposed test on two subsamples, one from July 1963 to December 1989, another
from January 1990 to December 2014. The summary of the two subsample results is reported
in Table 12.
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Table 11: Estimation and testing results for 10 industry portfolios

This table summarizes the estimation results for 10 industry portfolios. The first column indicates the portfolios.
The unconditional pricing error, α̂u, with its standard error and t-statistic are reported in the next three columns.

The covariance between the conditional betas and equity premium, Ĉov(β̂h, γ̂h), and its ratio over the pricing
error are shown in the fifth and sixth columns. The last two columns summarize the statistic for our test and
its p-value.

α̂u se(α̂u) t-stat. Ĉov(β̂τ , γ̂τ ) δ Q̂T p(Q̂T )
Food 0.0145 0.0053 2.7379 0.0018 0.1273 0.0116 0.0000
Beer 0.0189 0.0081 2.3498 0.0047 0.2491 0.0119 0.0000
Smoke 0.0308 0.0106 2.9122 0.0055 0.1787 0.0227 0.0000
Games 0.0042 0.0081 0.5184 -0.0033 -0.7952 0.0060 0.0402
Books 0.0019 0.0061 0.3181 0.0028 1.4686 0.0004 0.7437
Hshld 0.0051 0.0063 0.8080 0.0017 0.3428 0.0006 0.5829
Clths 0.0066 0.0071 0.9340 -0.0005 -0.0755 0.0077 0.0201
Hlth 0.0113 0.0059 1.9174 0.0011 0.1010 0.0081 0.0704
Chems 0.0020 0.0062 0.3261 0.0025 1.2296 -0.0004 0.6935
Txtls 0.0057 0.0087 0.6597 0.0014 0.2475 0.0054 0.2613
Cnstr -0.0005 0.0060 -0.0827 0.0022 -4.4542 -0.0021 0.1809
Steel -0.0135 0.0088 -1.5435 -0.0012 0.0881 -0.0101 0.0000
FabPr -0.0010 0.0055 -0.1834 0.0005 -0.4658 -0.0004 0.7839
ElcEq 0.0100 0.0065 1.5378 0.0020 0.2017 0.0077 0.2412
Autos -0.0070 0.0081 -0.8730 0.0044 -0.6237 -0.0121 0.0000
Carry 0.0099 0.0073 1.3490 -0.0016 -0.1623 0.0099 0.0000
Mines 0.0042 0.0123 0.3432 -0.0023 -0.5548 0.0082 0.0905
Coal 0.0109 0.0164 0.6643 -0.0028 -0.2533 0.0179 0.0201
Oil 0.0106 0.0082 1.2888 -0.0002 -0.0143 0.0111 0.0000
Util 0.0064 0.0057 1.1272 -0.0011 -0.1709 0.0083 0.0000
Telcm 0.0019 0.0060 0.3196 0.0013 0.6764 0.0021 0.3317
Servs 0.0032 0.0056 0.5743 -0.0032 -0.9732 0.0057 0.1206
BusEq -0.0036 0.0074 -0.4867 -0.0006 0.1586 -0.0042 0.4121
Paper 0.0035 0.0053 0.6641 0.0019 0.5393 0.0012 0.9648
Trans 0.0019 0.0063 0.3084 -0.0004 -0.2087 0.0003 0.6935
Whlsl 0.0072 0.0054 1.3392 -0.0018 -0.2430 0.0073 0.0302
Rtail 0.0074 0.0058 1.2667 0.0015 0.2029 0.0050 0.4020
Meals 0.0134 0.0077 1.7499 -0.0037 -0.2740 0.0145 0.0000
Fin 0.0007 0.0052 0.1405 0.0008 1.0487 0.0023 0.0704
Other -0.0076 0.0062 -1.2377 -0.0045 0.5849 -0.0031 0.6231
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The results in Table 12 for subsamples show clearly that the conditional CAPM has much
more power for the second subsample. We fail to reject the conditional CAPM hypothesis for
19 out of 25 size and book-to-market sorted portfolios. To look into the individual portfolios,
we also report the detailed test results on Fama-French 25 portfolios in Table 13 for the first
subsample and Table 14 for the second subsample, respectively. All other results are also
available upon request. The test results on individual portfolios show clearly the pattern of
rejection. From both Tables 13 and 14, one can see clearly that most portfolios well explained
by the conditional CAPM for the first subsample are still well explained for the later subsample.
Meanwhile, the conditional CAPM model gains the explanation power over some other portfolios
for the second subsample. This finding is consistent with the phenomenon documented in the
literature that anomalies tend to fade away after they are studied.

Table 12: Test results comparison between our method and the LN method for two subsamples

This table reports the numbers of portfolios that fail to reject the conditional CAPM at the given significance
level for subsamples. The betas are assumed to be stable within one quarter window. The data are taken from
Kenneth French’s web site.

Our Test LN Our Test LN
1% 5% 10% 1% 5% 10%
Jul. 1963 - Dec. 1989 Dec. 1989 - Dec. 2014

Fama-French 6 portfolios 2 2 2 0 5 3 3 2
Fama-French 25 portfolios 9 8 7 5 19 17 16 4
Fama-French 100 portfolios 68 57 48 13 91 76 69 12
5 industry portfolios 5 5 2 1 5 3 3 0
10 industry portfolios 8 4 4 0 9 8 7 1
30 industry portfolios 27 20 16 2 29 27 23 5
SMB, HML, MOM factors 0 0 0 0 0 0 0 0

§6 Conclusion

In order to discuss the validity of the conditional CAPM, LN propose a comparison of the
covariance of beta and the risk premium with the unconditional price error. Their method is
intuitive but not statistically applicable. We propose a statistic based on their argument and
provide a direct Bootstrap method to test the validity of the conditional CAPM.

Based on our simulations, we find that even when the true DGP follows the conditional
CAPM, there is a large chance that the method in LN tends to over-reject the model, which
highlights the importance of our testing procedure. Indeed, our test has good size and power in
a finite sample. After applying our method to several popular data sets, we find that for many
portfolios, we can not find an evidence against the conditional CAPM from the perspective of
LN. Test results on a wide range of size, book-to-market sorted and industrial portfolios also
show the conditional CAPM can provide a better explanation to real applications.
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Table 13: Estimation and testing results for Fama-French 25 portfolios for the first subsample

This table summarizes the estimation and testing results for the Fama-French 25 Portfolios. The first column
indicates the order of the portfolios. The unconditional pricing error, α̂u, with its standard error and t-statistic
are reported in the next three columns. The covariances between the conditional betas and equity premium,

Ĉov(β̂h, γ̂h), and the corresponding ratio over the pricing errors are shown in the fifth and the sixth columns.
The last two columns summarize the statistic for our test and its p-value.

Portfolio α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
S1/B1 -0.0124 0.0091 -1.3686 -0.0115 0.9266 -0.0020 0.7839
S1/B2 0.0102 0.0077 1.3246 -0.0063 -0.6127 0.0153 0.0000
S1/B3 0.0156 0.0070 2.2255 -0.0034 -0.2176 0.0178 0.0000
S1/B4 0.0257 0.0067 3.8204 -0.0024 -0.0915 0.0269 0.0000
S1/B5 0.0330 0.0069 4.7680 -0.0007 -0.0227 0.0324 0.0000
S2/B1 -0.0081 0.0075 -1.0712 -0.0101 1.2582 0.0012 0.9749
S2/B2 0.0106 0.0064 1.6748 -0.0024 -0.2222 0.0122 0.0000
S2/B3 0.0224 0.0060 3.7419 -0.0030 -0.1360 0.0245 0.0000
S2/B4 0.0266 0.0056 4.7379 -0.0007 -0.0255 0.0265 0.0000
S2/B5 0.0323 0.0067 4.8460 -0.0006 -0.0176 0.0315 0.0000
S3/B1 -0.0063 0.0062 -1.0174 -0.0076 1.2048 0.0008 0.6633
S3/B2 0.0125 0.0053 2.3528 -0.0020 -0.1566 0.0141 0.0000
S3/B3 0.0160 0.0051 3.1222 -0.0042 -0.2615 0.0195 0.0000
S3/B4 0.0249 0.0049 5.0382 -0.0005 -0.0191 0.0245 0.0000
S3/B5 0.0271 0.0062 4.3520 0.0000 0.0001 0.0263 0.0000
S4/B1 -0.0045 0.0045 -1.0097 -0.0037 0.8145 -0.0006 0.8543
S4/B2 -0.0027 0.0042 -0.6467 -0.0042 1.5571 0.0020 0.3417
S4/B3 0.0132 0.0043 3.0418 -0.0028 -0.2092 0.0159 0.0000
S4/B4 0.0207 0.0048 4.3381 0.0019 0.0941 0.0177 0.0000
S4/B5 0.0235 0.0062 3.7687 -0.0004 -0.0151 0.0227 0.0000
S5/B1 -0.0070 0.0042 -1.6896 0.0023 -0.3203 -0.0093 0.0000
S5/B2 -0.0038 0.0037 -1.0244 0.0023 -0.5976 -0.0055 0.0201
S5/B3 -0.0011 0.0047 -0.2429 0.0007 -0.5810 -0.0016 0.6131
S5/B4 0.0095 0.0049 1.9272 0.0023 0.2408 0.0071 0.0704
S5/B5 0.0097 0.0064 1.5050 0.0043 0.4479 0.0045 0.3015
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Table 14: Estimation and testing results for Fama-French 25 portfolios for the second subsample

This table summarizes the estimation and testing results for the Fama-French 25 Portfolios. The first column
indicates the order of the portfolios. The unconditional pricing error, α̂u, with its standard error and t-statistic
are reported in the next three columns. The covariances between the conditional betas and equity premium,

Ĉov(β̂h, γ̂h), and the corresponding ratio over the pricing errors are shown in the fifth and the sixth columns.
The last two columns summarize the statistic for our test and its p-value.

Portfolio α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
S1/B1 -0.0290 0.0108 -2.6735 -0.0025 0.0871 -0.0265 0.0000
S1/B2 0.0091 0.0092 0.9881 0.0012 0.1328 0.0078 0.5025
S1/B3 0.0139 0.0079 1.7516 0.0043 0.3088 0.0097 0.2111
S1/B4 0.0226 0.0079 2.8810 0.0039 0.1740 0.0195 0.0000
S1/B5 0.0249 0.0086 2.9040 0.0034 0.1374 0.0225 0.0000
S2/B1 -0.0095 0.0092 -1.0334 -0.0018 0.1940 -0.0096 0.0603
S2/B2 0.0027 0.0074 0.3667 0.0014 0.5107 0.0008 0.5427
S2/B3 0.0158 0.0073 2.1632 0.0026 0.1632 0.0137 0.0000
S2/B4 0.0131 0.0077 1.7143 0.0028 0.2150 0.0110 0.1106
S2/B5 0.0093 0.0096 0.9766 0.0037 0.3913 0.0072 0.5427
S3/B1 -0.0060 0.0081 -0.7384 -0.0024 0.4066 -0.0043 0.3719
S3/B2 0.0096 0.0059 1.6270 0.0006 0.0620 0.0087 0.1407
S3/B3 0.0126 0.0062 2.0265 0.0024 0.1910 0.0104 0.0101
S3/B4 0.0125 0.0070 1.7911 0.0028 0.2234 0.0105 0.0101
S3/B5 0.0234 0.0082 2.8639 0.0025 0.1076 0.0217 0.0000
S4/B1 0.0053 0.0068 0.7820 -0.0015 -0.2740 0.0054 0.1407
S4/B2 0.0072 0.0051 1.3899 0.0029 0.4002 0.0044 0.1206
S4/B3 0.0058 0.0062 0.9388 0.0032 0.5583 0.0032 0.6432
S4/B4 0.0133 0.0066 2.0032 0.0029 0.2175 0.0111 0.0000
S4/B5 0.0075 0.0087 0.8674 0.0033 0.4409 0.0058 0.2412
S5/B1 0.0020 0.0041 0.4766 -0.0008 -0.3813 0.0014 0.3015
S5/B2 0.0069 0.0046 1.4986 0.0029 0.4301 0.0027 0.2412
S5/B3 0.0015 0.0060 0.2462 0.0028 1.8958 -0.0006 0.7035
S5/B4 -0.0007 0.0073 -0.0916 0.0034 -5.0340 -0.0030 0.6332
S5/B5 0.0027 0.0094 0.2880 0.0045 1.6506 -0.0023 0.6332
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Appendix

A: Mathematical derivations

Here we provide the detailed proof of the asymptotic property of QT . The model specifica-
tion is given in Section 3.1. To derive the asymptotic property of QT , we need the following
assumptions.

A1. The disturbances ηh ∼ i.i.d.(0, σ2
η) and εt ∼ i.i.d.(0, σ2

ε) where σ2
η < ∞ and σ2

ε < ∞.

A2. The cross-window disturbance uh follows independent distribution (0, σ2
uh

), where Var(uh) =
σ2

uh
< ∞ and Cov(ηh, uh) = σηuh

. Note we allow conditional heteroskedasticity here.
Denote E[σηuh

] = σηu and E[σ2
uh

] = σ2
u. Also, assume that E[u4

h] < ∞ and σ̄2
u2

h
=

1
H

∑H
h=1(E[u4

h] − σ4
uh

) < ∞. Assume the Lindeberg condition holds for uh.

A3. vt is i.i.d. in each window Wh with variance σ2
vh

and Cov(ηh, σ2
vh

) = σηv2
h
. Denote

E[σ2
vh

] = σ2
v and E[σηv2

h
] = σηv2 . Also, assume that E[v4

t ] < ∞ and σ2
vh

also satisfy the
Lindeberg condition.

Run OLS over the time series to get conditional α and β for each window h:

β̂h =

∑
t∈Wh

[(Rt − R̄h)(RMt − R̄M,h)]∑
t∈Wh

[(RMt − R̄M,h)2]

=

∑
t∈Wh

[((βtRMt + εt) − (βtR̄M,h + ε̄h))(RMt − R̄M,h)]∑
t∈Wh

[(RMt − R̄M,h)2]

= βh +

∑
t∈Wh

[(RMt − R̄M,h)(εt − ε̄h)]∑
t∈Wh

[(RMt − R̄M,h)2
]

= βh +

∑
t∈Wh

[(vt − v̄h)(εt − ε̄h)]∑
t∈Wh

[(vt − v̄h)2]
= βh + eβh

= β + ηh + eβh
,

where eβh
=

∑
t∈Wh

[(vt − v̄h)(εt − ε̄h)]/
∑

t∈Wh
[(vt − v̄h)2] ∼ N(0, σ2

ε /wσ2
v). Run uncondi-

tional regression to obtain

β̂u =
∑T

t=1 (Rt − R̄)(RMt − R̄M )∑T
t=1(RMt − R̄M )2

=
∑T

t=1 ((β + ηt)RMt + εt − (βR̄M + 1
T

∑T
t=1 (ηt(γ + ut + vt)) + ε̄))(RMt − R̄M )∑T

t=1(RMt − R̄M )2

= β +
∑T

t=1 (ηtRMt − 1
T

∑T
t=1 ηtRMt + εt − ε̄)(RMt − R̄M )∑T

t=1(RMt − R̄M )2

= β +
∑T

t=1 (ηtRMt − 1
T

∑T
t=1 ηtRMt)(RMt − R̄M )∑T

t=1(RMt − R̄M )2
+

∑T
t=1 (εt − ε̄)(RMt − R̄M )∑T

t=1(RMt − R̄M )2

= β +
Ĉov(ηtRMt, RMt)

S2
M︸ ︷︷ ︸

eηT

+
Ĉov(εt, RMt)

S2
M︸ ︷︷ ︸

eεT

= β + eηT + eεT ,
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where the definitions of eηT and eεT are obvious. Hence,

α̂u = R̄ − β̂uR̄M = βR̄M +
1
T

T∑
t=1

(ηt(γ + ut + vt)) + ε̄ − β̂uR̄M

=
1
T

T∑
t=1

ηtut +
1
T

T∑
t=1

ηtvt + η̄γ + ε̄ − R̄M (eηT + eεT )

=
1
H

H∑
h=1

ηhuh +
1
H

H∑
h=1

ηhv̄h + η̄γ + ε̄ − R̄M (eηT + eεT ).

Since

S2
M =

1
T

T∑
t=1

(RMt − 1
T

T∑
t=1

RMt)2 =
1
T

T∑
t=1

(ut + vt − 1
T

T∑
t=1

(ut + vt))2
p−→ σ2

u + σ2
v

with the convergence rate of
√

H . This conclusion follows from the Lindeberg-Feller central
limit theorem. Also,

eηT =
ˆCov(ηtRMt, RMt)

S2
M

=
1
T

1
S2

M

T∑
t=1

[
ηtRMt − 1

T

T∑
t=1

(ηtRMt)

][
RMt − 1

T

T∑
t=1

RMt

]

=
1
T

1
S2

M

T∑
t=1

[
γηtut + ηtu

2
t − (γη̄ + ηu)(ut − ū) − γηtū + ηtutū + γηtv

2
t

]
+ P (vt)

=
1
H

1
S2

M

H∑
h=1

[
γηhuh + ηhuh

2 + γηhs2
vh

− (γη̄ + ηu)(ut − ū) − γηhū + ηhuhū
]
+ P (vt),

where ηu ≡ 1
T

∑T
t=1(ηtut), and P (vt) is a polynomial of vt. It is easy to show that P (vt)

p−→ 0
with the convergence rate of

√
T . Then,

eηT =
1
H

1
S2

M

H∑
h=1

(γηhuh + ηhuh
2 − ηuuh + γηhs2

vh
) + O(

1
T

),

where s2
vh

≡ 1
w

∑
t∈Wh

(RMt − R̄M,h)2
p−→ σ2

vh
with convergence rate

√
w. Using the same

arguments, we can easily show that eεT
p−→ 0 with the convergence rate of

√
T . Now, we can

calculate E[α̂u] as follows

E[α̂u] = E

[
1
H

H∑
h=1

ηhuh +
1
H

H∑
h=1

ηhv̄h + η̄γ + ε̄ − R̄M (eηT + eεT )

]

= E

[
1
H

H∑
h=1

ηhuh − R̄MeηT

]

= (1 − γ2

σ2
u + σ2

v

)σηu +
γ

σ2
u + σ2

v

σηu2 +
γ

σ2
u + σ2

v

σηv2 + O(
1
H

).
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Next, we consider the asymptotic property of α̂u. To this end, we consider
√

Hα̂u =
1√
H

[
H∑

h=1

(ηhuh) + γ

H∑
h=1

ηh − HR̄MeηT +
H∑

h=1

(ηhv̄h) +
1
w

T∑
t=1

εt − HR̄MeεT

]

=
1√
H

[
H∑

h=1

(ηhuh) + γ

H∑
h=1

ηh − HR̄MeηT +
H∑

h=1

(ηhv̄h) +
1
w

T∑
t=1

εt − HR̄MeεT

]

=
1√
H

[
H∑

h=1

(ηhuh) + γ

H∑
h=1

ηh − R̄M

S2
M

H∑
h=1

(γηhuh + ηhuh
2 − ηuuh + γηhs2

vh
)

+
H∑

h=1

(ηhv̄h) +
1
w

T∑
t=1

εt − HR̄MeεT

]
.

According to Slutsky’s theorem, we can treat R̄M and S2
M as constant in this equation. Then,

by combining this with Assumptions A1 - A3, the Lindeberg-Feller central limit theorem holds
true as √

H
α̂u − E[α̂u]

σα

d−→ N(0, 1),

where σ2
α ≡ limH→∞ Var(

√
Hα̂u). By recalling the definition of QT in equation (4),

QT ≡ α̂u −
[
1 − γ̂2

σ̂2
M

]
Ĉov(β̂h, γ̂h) +

γ̂

σ̂2
M

Ĉov
[
β̂h, (γ̂h − γ̂)2

]
+

γ̂

σ̂2
M

Ĉov(β̂h, s2
vh

),

we see easily that QT is actually α̂u − Ê[α̂u], where Ê[α̂u] is the sample analog of E[α̂u].
Additionally, sample variance and covariance estimators are consistent estimators. Then,
Ĉov(β̂h, γ̂h), Ĉov

[
β̂h, (γ̂h − γ̂)2

]
and Ĉov(β̂h, s2

vh
) are consistent estimators of the true val-

ues when H → ∞. Meanwhile, γ̂, σ̂2
M also converges to the true value in probability. Then,

using Slutsky’s theorem, we have QH as asymptotically normal with the convergence rate of
H . This proves equation (5).

B: Alternative stable window size

To see how the choice of the size of the rolling window affects the testing results, we repeat
our procedures above by using the monthly window (21 trading days) instead of the quarterly
window. The following tables (Tables 15 and 16) report the test results when betas are assumed
stable with the monthly window. From both Tables 15 and 16, one can see clearly that the
results for the monthly window are similar to those for the quarterly window although there
are some differences.
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Table 15: Test results comparison between our method and the LN method for the monthly
window size

This table reports the numbers of portfolios that fail to reject the conditional CAPM at the given significance
level. LN do not provide a formal test statistic and they only argue that the ratio of covariance between equity
premium and unconditional alpha should be close to 1. Therefore, we take it as a rejection if the value of this
ratio does not belong to [0.5, 2]. The betas are assumed to be stable within one month window. The data are
taken from Kenneth French’s web site and the sample period is from July 1963 to December 2014.

Our Test LN
1% 5% 10%

Fama-French 6 portfolios 3 3 2 2
Fama-French 25 portfolios 7 5 4 4
Fama-French 100 portfolios 61 43 35 17
5 industry portfolios 3 2 2 1
10 industry portfolios 6 4 4 2
30 industry portfolios 18 14 13 6
SMB, HML, MOM factors 0 0 0 0

Table 16: Estimation and testing results for Fama-French 25 portfolios for the monthly window
size

This table summarizes the estimation and testing results for the Fama-French 25 Portfolios. The first column
indicates the order of the portfolios. The unconditional pricing error, α̂u, with its standard error and t-statistic
are reported in the next three columns. The covariances between the conditional betas and equity premium,

Ĉov(β̂h, γ̂h), and the corresponding ratio over the pricing errors are shown in the fifth and the sixth columns.
The last two columns summarize the statistic for our test and its p-value.

Portfolio α̂u se.(α̂u) t-stat. Ĉov(β̂h, γ̂h) δ̂ QT p(Q̂T )
S1/B1 -0.0210 0.0070 -2.9849 -0.0154 0.7357 -0.0057 0.0704
S1/B2 0.0092 0.0059 1.5540 -0.0074 -0.7984 0.0164 0.0000
S1/B3 0.0142 0.0052 2.7114 -0.0029 -0.2019 0.0168 0.0000
S1/B4 0.0237 0.0051 4.6290 -0.0015 -0.0633 0.0254 0.0000
S1/B5 0.0283 0.0055 5.1777 -0.0007 -0.0257 0.0291 0.0000
S2/B1 -0.0089 0.0059 -1.5095 -0.0131 1.4676 0.0032 0.1106
S2/B2 0.0065 0.0048 1.3421 -0.0029 -0.4501 0.0093 0.0201
S2/B3 0.0188 0.0047 4.0179 -0.0012 -0.0639 0.0204 0.0000
S2/B4 0.0197 0.0047 4.1626 0.0007 0.0342 0.0198 0.0000
S2/B5 0.0204 0.0058 3.5070 -0.0008 -0.0404 0.0218 0.0000
S3/B1 -0.0063 0.0051 -1.2545 -0.0087 1.3641 0.0021 0.0101
S3/B2 0.0109 0.0039 2.7549 -0.0027 -0.2529 0.0139 0.0000
S3/B3 0.0136 0.0040 3.4092 -0.0017 -0.1243 0.0157 0.0000
S3/B4 0.0186 0.0043 4.3589 0.0006 0.0305 0.0185 0.0000
S3/B5 0.0250 0.0051 4.9033 0.0000 0.0002 0.0250 0.0000
S4/B1 0.0004 0.0040 0.0932 -0.0041 -11.0465 0.0044 0.0000
S4/B2 0.0021 0.0033 0.6313 -0.0018 -0.8500 0.0045 0.0000
S4/B3 0.0092 0.0037 2.4448 -0.0012 -0.1327 0.0113 0.0000
S4/B4 0.0169 0.0041 4.1619 0.0011 0.0655 0.0156 0.0000
S4/B5 0.0154 0.0053 2.9244 -0.0007 -0.0482 0.0159 0.0000
S5/B1 -0.0026 0.0030 -0.8624 0.0026 -1.0072 -0.0066 0.0000
S5/B2 0.0014 0.0030 0.4821 0.0027 1.9099 -0.0018 0.0000
S5/B3 0.0004 0.0038 0.1084 0.0020 4.9088 -0.0012 0.6633
S5/B4 0.0047 0.0044 1.0739 0.0016 0.3438 0.0033 0.5628
S5/B5 0.0063 0.0056 1.1158 0.0030 0.4722 0.0026 0.4523
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