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Abstract. Mesh segmentation is one of the important issues in digital geometry processing.
Region growing method has been proven to be a efficient method for 3D mesh segmentation.
However, in mesh segmentation, feature line extraction algorithm is computationally costly, and
the over-segmentation problem still exists during region merging processing. In order to tackle
these problems, a fast and efficient mesh segmentation method based on improved region growing
is proposed in this paper. Firstly, the dihedral angle of each non-boundary edge is defined and
computed simply, then the sharp edges are detected and feature lines are extracted. After region
growing process is finished, an improved region merging method will be performed in two steps
by considering some geometric criteria. The experiment results show the feature line extraction
algorithm can obtain the same geometric information fast with less computational costs and the
improved region merging method can solve over-segmentation well.

81 Introduction and notation

With the fast development of advanced modeling and visualization techniques, 3D models
have been a more and more popular type of digital media. Highly detailed models can be easily
acquired by the 3D laser scanning system and the techniques for efficient and robust processing
of these models have become an active research area in computer graphics and digital geometry
processing. Mesh segmentation is one of the important issues in digital geometry processing.
Mesh segmentation can extract shape properties and structure characteristics from 3D Models.
It is also an important step towards model understanding. Many applications can benefit from
the mesh segmentation. In computer graphics, segmentation provides great prospect for mesh
simplification[5], texture mapping[19], 3D shape retrieval[31], morphing[28], multiresolution
modelling[6], geometry compression[12], collision detection[20], animation[13] and more. In
these applications, an reliable mesh segmentation method is very important and can have a
great influence on the results.
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According to the different purposes of mesh segmentation, mesh segmentation can be further
classified into two categories: facet segmentation and component segmentation. The aim of the
facet segmentation is to decompose a 3D mesh into regions and each region is homeomorphic
to an open disk on the plane. The task of component segmentation is to partition a 3D mesh
into a set of disjoint and meaningful parts which also keep consistent to the original model.

It is documented in various literatures about mesh segmentation, however there are still
some problems, for example, the computation cost and the over-segmentation problem. In this
paper, we present an improved mesh segmentation method based on region growing. The main
contribution of our method is that we propose an improved region merging method to solve the
over-segmentation problem well, at the same time, we present a feature line extraction algorithm
based on dihedral angle and obtain the same geometric information with less computational
cost. Compared with other algorithms, our algorithm has very good advantages: high efficiency,
feasibility application and more accurate and robust.

82 Related work

In the past few years, a lot of 3D mesh segmentation algorithms have been proposed. Gar-
land, et al. presented a face clustering method which extended from Quadric error Metric[7]
to partition a mesh into planar elements[8]. Shlafman, et al. proposed a method that uses
K-means to cluster faces into meaningful parts[28]. Attene, et al. described a hierarchical face
clustering algorithm based on fitting primitives[1]. Mangan, et al. presented a watershed algo-
rithm by making use of the mean and Gaussian curvatures[23]. Zhang, et al. proposed a simple
region growing algorithm to segment different regions based on curvatures[30]. Yamauchi, et
al. proposed a simple scheme for clustering mesh normals[29]. Lee, et al. presented an intelli-
gent scissoring operator for meshes which supports both automatic segmentation and manual
cutting[18].

Other methods include core extraction[14], spectral clustering[21], random walks[16], ran-
dom cuts[9], leaning-based[11] and chipper[22]. The method of core extraction method trans-
forms the vertices of the mesh into a pose-invariant representation using Multi-dimensional
scaling(MDS). The method of spectral clustering applies spectral graph theory to solve the
clustering of the eigenvectors of a symmetric affinity matrix. The method of random walks
presents both an interactive and an automatic method of mesh segmentation based on random
walks. The method of random cuts randomizes mesh segmentation algorithms to produce a
function that captures the probability that an edge lies on a segmentation boundary (a cut)
and to produce a ranked set of the most consistent cuts based on how much cuts overlap with
others in a randomized set. The method of leaning-based presents a data-driven approach to
simultaneous segmentation and labeling of parts in 3D meshes. The method of chipper parti-
tions a 3D mesh into smaller parts so that each part can be printed by 3D printer and then
be assembled to form the original mesh. A survey of segmentation techniques can be found in
references [2,16].

Most previous methods decompose models based on some geometric criteria such as cur-
vature, geodesic distances, concavity and dihedral angles. The choices of constraints and the
criteria for deciding which elements belong to the same segment are the most important fac-
tors affecting the result. For most of these algorithms, the number of segments is determined
by users. Only a few methods [14,27] can determine the segment number automatically. The
method proposed by Kalogerakis, et al. is different from others that it requires some labeled
training meshes[11]. Some researches have already considered to extend region growing method
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from image segmentation to 3D mesh segmentation[30,17]. However, a serious problem of over-
segmentation still exist. The quality and speed of segmentation method need to be researched
in detail.

Our method is an extension of the region growing method. Dihedral angle of each non-
boundary edge is used to detect the sharp edges to extract the feature lines. This feature line
extraction algorithm can obtain the same geometric information fast with less computational
cost. In view of some geometric criteria, an improved region merging method is reported. This
region merging method has two steps to merge the regions. The experimental results show
that our method has good robustness and adaptability which can settle the over-segmentation
problem neatly.

83 Mesh segmentation based on improved region growing

During past years, region growing method has been applied to mesh segmentation. Region
growing is an iterative process and usually begins from a set of seeds that elements have simi-
lar attributes to a seed are classified into the same region. In general, region growing methods
have something in common. First of all, some geometrical features of mesh need to be detected.
For example, Lavoué, et al. used sharp edges and principal curvatures as the geometrical fea-
tures[17]. The Gaussian curvature is estimated for each vertex on the surface[30]. Gaussian
curvature and concaveness are regarded as the geometrical features[3]. Next, a region growing
process is performed to cluster the similar elements into the same region. Finally, in order to
reduce the over-segmentation problem which is generated in this step, a region merging oper-
ation must be performed in the next step. From the view of the former research, it should be
worthy to pay more attention that region merging process plays a decisive part in mesh segmen-
tation and affects the final result of the algorithm. The previous researchers have considered
to overcome this difficulty. For instance, Chen and Georganas proposed a simple yet efficient
region merging algorithm with two criteria[3]. One criterion is the region size, another one is
the boundary length of the adjacent region.
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Figure 1: The flow diagram of our region growing method.

Our method improves the original method of region growing and mainly includes three steps.
Figure 1 shows the flow diagram of our improved region growing method. firstly, the dihedral
angle of each non-boundary edge is computed and sharp edges are detected for feature line
extraction. That can obtain the same geometric information fast with less computational cost.
Secondly, the faces are classified into different clusters by region growing method. Thirdly, a
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novel region merging algorithm is processed that similar regions are merged. Our region merging
method can solve the over-segmentation problem well by eliminating redundant feature lines
and preserving the cutting contours which corresponding to real natural boundaries of the
model.

3.1 Feature line extraction based on Dihedral angle

Generally, the curvature of vertex is a commonly-used feature in mesh segmentation algo-
rithms. But, only taking curvature information into consideration does not contain all of the
situations which may lead to a failure when there are concave vertexes on the mesh(see Figure
2). But the calculation of concave vertices enlarges the work remarkably especially when the
model has a high resolution that you have to enlarge the normal 1-ring neighborhood to an

extended Multi-Ring (XMR) neighborhood|[3].

Figure 2: The red vertex is hyperbolic and the blue one is concave.
Two kinds of vertices are need to be considered[3].

Differently, to describe the geometric behavior of a surface,we just pay attention to dihedral
angle. For a given edge which is a non-boundary edge, we can get the dihedral angle between
two adjacent faces f; and f;.

0(fi, fj) = m — arccos(N; * Nj), (1)

Where Ny is the normal to face fy.

Now, we can define a sharp edge as follows: an edge is a boundary edge or shared by two
adjacent triangles and its dihedral angle is smaller than a given threshold . In our experiment,
we have found a = 3.12 for the general case, a larger value for high-resolution models and a
small value for coarse models. It’s important to note, however, unlike CAD models, only concave
edges need to be considered for graphical models. Because we find that CAD models have many
sharp features and are more sensitive than graphical models in terms of convex edges. It is
common to see the dividing lines are composed of concave edges for graphical models.After all
sharp edges are found, isolated and discontinuous sharp edges need to be eliminated, and then
feature lines are extracted.

Since only the sign of the dihedral angle is used in preprocessing stage, we believe that this
simple sharp edge detection approach is sufficient for our application. Actually, it is easy to
prove that the edges which connect hyperbolic or concave vertices must be sharp edges. So
instead of calculating discrete curvature and the concavity and convexity of each vertex, our
method obtains the same geometry information at a low cost by only taking dihedral angle into
account. From figure 1, we can see that the skirt’s feature lines(the black lines) are extracted
and the feature lines capture the curvature information of mesh well.
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3.2 Face clustering

Figure 3: The face clustering process: (1)starting from the triangle ¢;, the associated
neighboring triangle ¢; is classified into the same cluster, so does the other two adjacent
triangles; (2)The same process is repeated for other triangles belonging to the cluster until
sharp edges(dotted line) are encountered.

After all sharp edges are found and feature lines are extracted, a region growing operation
is performed as follows. We start from a triangle ¢; that has not classified into a cluster, then a
new region is created, containing this triangle, associated with a new label L. Then a recursive
process extends to this cluster: for each triangle ¢; belonging to the cluster, for each non-sharp
edge ey of this triangle, we consider the opposite neighboring triangle to integrate into the
region and assign the same label L. This recursive process will be terminated until the grown
region is surrounded by sharp edges(see Figure 3). This growing algorithm is repeated for every
other triangle that is still unlabelled.

With this process, all triangles are assigned a region label. Then, extra sharp edges which
connect two triangles and have the same label need to be removed. This is an essential step at
this point, because the region border will be used in the next stage.

3.3 Improved region merging

There is no doubt that the over-segmentation problem is inevitable in previous step due to
small details and noise on the polygonal surface. Furthermore, the over-segmentation problem
has a negative affect on the final segmentation results. So, how to solve the over-segmentation
problem and preserving the cutting contours that match human perception is the most impor-
tant in region merging stage. We have known from the previous research achievements based
on the region growing algorithm that the over-segmentation problem haven’t been solved very
well, even to be discounted or ignored.

In this section, we propose a novel and efficient region merging algorithm. The region
growing stage proceeds in two steps(see Figure 4). Before we start to introduce the specific
algorithm. A few notations are given.

Definition 3.1. An EdgeSection is composed of edges which are shared by two different
clusters.

Definition 3.2. For a given cluster with area s and perimeter c, we define the planarity p of
the cluster which measures the ratio of its squared perimeter c? to its area s.
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(a) (c)

Figure 4: The procedure of region merging algorithm contains two steps: (a)The mesh after
face clustering; (b)A large number of small clusters are merged with other clusters; (¢c)Both
planarity and small regions are estimated.

2

p= dns (2)
As we consider that the size of initial clusters are considered small, so, at first, a large
number of small clusters will be merged into large clusters by some simple criterions. Given the
number of segmentations k by users, in the first step, the number of clusters n will be reduced
to a value grater than k(for example, we use 2k in our experiment)by choosing the cluster
iteratively with the smallest area to merge with a neighboring cluster. In every iteration step,
once the cluster is selected, we first find the cluster’s all EdgeSections. Our goal is to assign
a EdgeSection ES,’s probability be P;; ( relative to EdgeSection ES; ) of being removed to
merge the two adjacent clusters. Let Length(ES;) be the length of EdgeSection, and Avg(6;)
be the average dihedral angle of EdgeSection. We define P;; as follows:

B Length(ES;) Avg(0;)
Py=p <Length(ES¢) T Length(ESﬂ) o <Avg(90 + Avg(‘%‘))

(3)

—»

Figure 5: A selected region will be merged with its adjacent region that has both long and flat
EdgeSection. In this figure, region C merges with region B.

We can see this merging process in Figure 5. The principle of this metric is straightforward.
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If EdgeSection IS; is longer and more flat than EdgeSection ES;, the probability of removing
ES; is larger than the probability of removing ES;. We also find that the average angles of the
EdgeSection is more important than the length of the EdgeSection. So, we set = 0.1 in our
experiment and acquire a good result. Finally, we can get Pj; = 1— P;; and 0 < P;; < 1. After
each region merging, we update the neighbor information of associated clusters.

dig/
‘iﬁ/
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Figure 6: Both of area and planarity are needed to be considered in this merging process, and
the role of them can be seen by comparing two segmentation results for two models by
different coefficients: (a)Segmentation of table with v = 0.0(bottom); (b)Segmentation of vase
with v = 1.0(bottom)

When small regions are merged into large regions, both planarity and small regions will be
estimated. At this stage, for any two clusters C; and Cj, we define a probability P;(C;) that
cluster C; will be selected to combine with other clusters relative to C; as follows:

FG)=1-n <%> —= <A7’ea(é:)ej—(j;’)ea(0j)) ’ @

where Area(C;) is the area of cluster C; and ~ represents the weight of planarity. We find
when v = 0.6, the results are better. The planarity represent the ratio of the squared perimeter
to area. The perimeter consists of the length of cluster’s non-boundary edges and the area
is composed of the area of cluster’s each triangle. We can easily know that a circle will have
planarity p = 1 and larger values of p correspond to more planar and irregular regions in a
general way. In our experiment, we find that almost all of redundant clusters are planar and
irregular. So these clusters need to be selected to merge with other clusters and the planarity
of finally segments will be small relatively. The role of these factors can also be seen in Figure
6. Although some models use one of these factors can obtain a good segmentation results as
well, both of them need to be considered for general cases. From Figure 6, we can see that the
effect of the area and planarity, and the error segmentation results by lacking any of them. One
of table’s leg is selected to merged with other region by only considering area factor, because
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it has a smaller area. Instead, the bottom of table is flatter than the leg. So the planarity
factor cannot be ignored for this table. The vase model is partitioned wrongly by only taking
planarity factor into account. The area of the region is also important in merging process for
it. So these two factors can be combined to get a satisfactory result. In this stage, the number
of clusters will be reduce to k which is given by user. In each iteration process, once the cluster
is chosen, the following process is the same as the last step that we choose a proper adjacent
cluster to merge.

After the region merging process listed above is finished, a large number of small and
irregular clusters are removed and segments are generated.

84 Experimental results

In this section, we evaluate our segmentation method on the Princeton segmentation bench-
mark[4]. The benchmark provides both human-generated and algorithm-generated segmen-
tations. The Princeton segmentation benchmark evaluates segmentation algorithms against
human-generated segmentations on 19 categories of models and each category has 20 models.
The benchmark also provides several measures to compare these algorithms like Cut Discrep-
ancy[10], Hamming Distance, Rand Index[25] and Consistency Error[24]. According to different
people, the number of segmentations of model is different. So, in order to remove abnormal
segmentations, we select the number, a choice for most people, as the labeling number, and
choose one of these segmentations to be used as the ground-truth segmentation. One snapshot
of segmentation result from applying our approach to one model from every category is shown in
Figure 7. From Figure 7, we can see that the results of our algorithm match human perception
well with cutting contours along the geometric features.

Figure 7: Segmentation results produced by applying our approach on the Princeton
segmentation benchmark[4]. We can see that the results of our algorithm match human
perception well with cutting contours along the geometric features.

We have tested our segmentation algorithm and made a comparison with previous methods
on the entire 3D Segmentation Benchmark dataset. Table 1 shows a comparison of the per-
formance of the three algorithms for each object category and lists the detailed Rand Index
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Table 1: The result of Rand Index scores for Randomized Cuts, Random Walks and Region
Growing(our method) and smaller scores suggest better segmentation results.

Model Categories | Number of models | Randomized Cuts | Random Walks | Region Growing
Human 16 1.32 4.46 1.46
Cup 19 3.41 6 0.89
Glasses 20 1.05 6.8 1.16
Airplane 20 2.29 5.27 1.27
Ant 20 0.27 1.19 0.43
Chair 20 2.94 2.75 1.02
Octopus 20 1.28 1.72 0.48
Table 20 8.2 2.06 0.25
Teddy 20 0.61 2.36 0.56
Hand 20 1.37 3.87 1.56
Plier 20 1.85 4.28 3.38
Fish 20 5.93 7.65 1.9
Bird 18 1.34 4.36 1.58
Armadillo 18 1.19 1.78 1.62
Bust 19 2.59 4.53 3.01
Mech 20 4.55 2.94 0.23
Bearing 17 0.44 3.49 0.07
Vase 17 1.38 4.35 1.07
Fourleg 20 3.79 5.51 3.57
Average - 0.125 0.197 0.069

scores for each category. Note that we have ignored some models that the human-generated
number of segments can not be distinguished apparently. We mainly uses Rand Index measure
to compare segmentations. Rand Index measures the probability that two triangles are either
in the same segment in two segmentations, or in different segments in both segmentations. A
more detail information about Rand Index can be referred to reference [4].

We can also obtain more details about the comparative results for each category from Figure
8. The performance of our method tends to stable relative to other two algorithms. For the
vast majority of categories, our region growing method is superior to the other two algorithms.
We give more segmentation results for different models in Figure 9. Figure 9 provides a visual
comparison with other methods for Chair, Fish, Bird, Hand, Human. Among the given methods,
Region Growing, Randomized Cuts and Random Walks, we can see that our proposed Region
Growing algorithm achieves the best performance, significantly outgoing the other two.

As described in Sections 3.1 and 3.3, dihedral angle has been devised to efficiently extract the
feature lines and the region merging method solve the over-segmentation problem well. All our
experiments are run on a commodity PC with Intel Pentium 2.90GHz processor and 2GB RAM.
Table 2 lists the mesh information and the computing time for the models presented in Figures
4, 6 and 9. In the view of the timings, we can see that the performance of our algorithm in the
step of preprocessing and feature line extraction is quite good. The time of this step is no more
than 0.5s. However, the average time of computing the principal curvature takes about 1.72s
(respectively, Chair(2.62s), Fish(0.93s), Bird(0.75s), Hand(1.40s), Table(1.59s), Vase(2.47s),
Octopus(1.36s)), and that doesn’t include the costs of computing the concavity and convexity
of vertices in Multi-Ring(XMR) neighborhood environments. The process of face clustering is
also effective and the average of time is about 0.5s. Because of taking more factors into account
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Table 2: Statistics of the different steps of our segmentation for models presented
in Figures 4, 6 and 9.

preprocessing and face region
Model # of # of # of feature line clustering merging total
(Figure) vertices | triangles | segments X . R K time(s)
extraction times (s) times (s) times (s)
Chair(9(a)) 14372 28744 8 0.30 0.54 3.52 4.36
Fish(9(b)) 10186 20368 7 0.16 0.37 12.3 12.83
Bird(9(c)) 5054 10104 5 0.12 0.19 1.74 2.05
Hand(9(d)) 8647 17290 7 0.21 0.33 4.98 5.52
Human(9(e)) 15223 30450 15 0.37 0.62 9.66 10.65
Table(6(a)) 9802 19600 9 0.21 0.37 5.73 6.31
Vase(6(b)) 14476 28952 6 0.36 0.55 11.07 11.98
Octopus(4) 9124 18244 9 0.22 0.35 3.03 8.60

in our region merging algorithm, the time of this process is longer than other two steps, but it
is worthwhile for our method. Even so, the processing speed of our method is also competitive.

85 Conclusion

In this paper, we have presented a simple and efficient segmentation method by region
growing. Instead of using Gaussian curvature and concaveness estimation as 3D feature ex-
traction, we simply consider dihedral angle as the geometric criteria. After faces are clustered
into different classes, we design a novel region growing algorithm to solve the over-segmentation
problem. The experimental results are satisfactory, and the method is easy to implement and
also sufficiently efficient to be useful in applications.

In the future, we intend to explore extension of our method to Spectral Clustering[21].
The bottleneck of Spectral Clustering is inefficiency both in time and memory usage. The
computations in Spectral Clustering method are dominated by solving the eigenvectors and
eigenvalues which cannot be processed when the number of faces is very large. According to
the analysis, we can cluster the faces into classes at first in order to reduce the dimension of
affinity matrix. Then this particular problem can be solved easily.

In recent years, dominant-quad remeshing has become a hot research field. But adaptive
mesh resolution is difficult to be achieved in conforming quad meshes[15]. So, we can apply our
segmentation method to dominant-quad remeshing that the size of the faces can adapt to the
local curvature.
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