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泛Clifford分析中的k-向量正则函数与相关算子

的性质
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摘 要: 该文首先定义了泛Clifford分析的Ti算子并研究了Ti算子与Dirac算子的交换
性质, 其次利用Dirac算子和Ti算子构造L算子和R算子, 定义了取值在泛Clifford代数
上的k-向量正则函数, 并且研究了k-向量正则函数与其他正则函数类和广义调和函数
的关系. 最后给出了泛Clifford代数空间中与R算子和L算子相关的广义的Stokes公式,
它是后续找出k-向量正则函数积分表示的重要基础.
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§1 引 言

作为现代分析的重要分支之一, 自1970年以来, 取值在Clifford代数上的函数理论及其应
用已被很多学者研究[1-11], 其中很重要的一项工作就是利用Clifford分析中的正则函数来求
解高维空间中偏微分方程, 例如Weinstein方程和Vekua方程. 黄沙和李生训给出复Clifford分
析中一类二阶偏微分方程于Lie球双曲空间上的Dirichlet问题解的存在性和解的积分表示
式[12]. 2006年, Leutwiler和Eriksson给出了k-超正则函数的定义[13]. 2009年, 他们又找出了k-超
正则函数的积分表示[14]. 从另一角度来看, k-超正则函数的积分表示就是上半空间Rn+1

+ ={
(x0, x1, · · · , xn) ∈ Rn+1 | xn > 0

}
上的Weinstein方程的解. 袁洪芬和乔玉英给出了k-超正则函

数的开拓定理和唯一性定理, 通过k-超正则函数的P部和Q部满足的两个微分方程, 讨论了此方
程与k-超正则函数及其相关函数的关系[15]. 2019年, Doan Cong Dihn在Clifford分析中将h-正
则函数与k-超正则函数统一了起来, 引入了(m,h)-正则函数, 并将其与轴对称Helmholtz方程
联系起来[16]. 2020年Doan Cong Dihn又在Clifford分析中引入了广义ki-正则函数, 并将其与广
义Weinstein方程联系了起来[17].
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近年来, 取值在泛Clifford代数上的函数论被越来越多的学者所青睐. 2002年, Du Jinyuan,
Zhang Zhongxiang给出了泛Clifford代数上特征边界上的正则函数的积分表示[18]. 2011年, Du
Jinyuan和Xu Na研究了泛Clifford代数上的Cauchy型积分的边界行为[19]. 2021年, Xu Na, Li
Zunfeng, Yang Heju得到了取值在泛Clifford代数上的复正则函数的积分表示[20].

本文首先引入Ti算子并得到其与Dirac算子的交换性质, 进而利用Dirac算子和Ti算子构造

了L算子和R算子, 给出取值在泛Clifford代数空间上的k-向量正则函数. 随后研究了LR-k向量
正则函数与两个高维偏微分方程组的解的关系, 本文讨论的LR-k向量正则函数是这两个偏微分
方程组的解. 本文最后给出与L算子和R算子相关的广义的Stokes公式, 它是后续找出k-向量正
则函数积分表示的重要准备工作.

§2 预备知识
设Vn,s是以{e1, · · · , es, · · · , en} (1 ≤ s ≤ n)为基的n-维实线性空间. 考虑以

{
eA, A =

(h1, · · · , hr) ∈ PN, 1 ≤ h1 < · · · < hr ≤ n
}
为基的2n−1维实向量空间C(Vn,s), N为集

合{1, · · · , n}, PN表示N的所有保序子集. eh1eh2 · · · ehr
记为eA, 这里A = {h1, · · · , hr} ∈ PN .

C(Vn,s)中的乘法规则定义为



eAeB = (−1)]((A∩B)\S)(−1)P (A,B)eA4B , A,B ∈ PN,

λµ =
∑

A∈PN

∑
B∈PN

λAµBeAeB , λ =
∑

A∈PN
λAeA, µ =

∑
B∈PN

µBeB ,

(1)

其中S为集合{1, · · · , s} , ](A)为集合A中的元素个数, 并且P (A,B) =
∑

j∈B

P (A, j), P (A, j) =

] {i, i ∈ A, i > j} , 对称差集A4B也是按上述方式保序的, λA, µB ∈ R分别是eA与eB的系数. 根
据乘法规则(1), e1为单位元, 同时有




e2
i = 1, i = 1, 2, · · · , s,

e2
j = −1, j = s + 1, s + 2, · · · , n,

eiej = −ejei, 1 ≤ i < j ≤ n.

eh1eh2 · · · ehr = eh1h2···hr , 1 ≤ h1 < h2 < · · · < hr ≤ n.

(2)

显然, C(Vn,s)是一个实线性、可结合但不可以交换的代数, 它被称为Vn,s上的泛Clifford代数. 为
了定义内积与相应的模, 现在定义C(Vn,s)上的对合运算为




eA = (−1)σ(A)+](A∩S)eA, A ∈ PN ,

λ̄ =
∑

A∈PN
λAeA, λ =

∑
A∈PN

λAeA.

(3)

其中σ(A) = ](A)(](A) + 1)/2. 根据(3)有



ei = ei, i = 1, · · · , s,

ej = −ej , j = s + 1, · · · , n,

λµ = µλ, λ, µ ∈ C(Vn,s).

(4)

∀λ, µ ∈ C(Vn,s), 定义它们的内积为
(λ, µ) =

∑

A,A

λAµA, 其中 λ =
∑

A∈PN
λAeA, µ =

∑

A∈PN
µAeA. (5)
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所以C(Vn,s)上的模定义为
|λ| =

√
(λ, λ) = (

∑

A∈PN
|λA|2) 1

2 . (6)

设Ω是Rn上的一个非空开集. 现在考虑定义在Ω上取值在C(Vn,s)上的函数
f : Ω −→ C(Vn,s),

它记为

f(x) =
∑

A

fA(x)eA, x = (x1, x2, · · · , xn) ∈ Ω ,

其中fA是Ω上的实值函数, 并且称其为函数f的eA-分量函数. 当所有的函数fA具有连续

性、可微性等性质时, 函数f也都具有这些性质, 即f ∈ C(r)(Ω , C(Vn,s))的充要条件是fA ∈
C(r)(Ω , C(Vn,s))(r ≥ 1). 函数f的共轭表示为

f(x) =
∑

A

fA(x)eA, x ∈ Ω .

引入算子[1]

D =
n∑

k=1

ek
∂

∂xk
: C(r)(Ω , C(Vn,s)) −→ C(r−1)(Ω , C(Vn,s)).

该算子从左或从右作用于函数要遵循规定

D [f ] =
n∑

k=1

∑

A

ekeA
∂fA

∂xk
, [f ]D =

n∑

k=1

∑

A

eAek
∂fA

∂xk
.

由于ei(1 ≤ i ≤ s)是不同于ej(s < j ≤ n)的, 所以将算子D分为D1, D2两部分, 其中

D1 =
s∑

k=1

ek
∂

∂xk
: C(r)(Ω , C(Vn,s)) −→ C(r−1)(Ω , C(Vn,s)),

D2 =
n∑

k=s+1

ek
∂

∂xk
: C(r)(Ω , C(Vn,s)) −→ C(r−1)(Ω , C(Vn,s)).

它们的共轭算子分别为

D1 =
s∑

k=1

ek
∂

∂xk
=

s∑

k=1

ek
∂

∂xk
= D1, D2 =

n∑

k=s+1

ek
∂

∂xk
= −

n∑

k=s+1

ek
∂

∂xk
= −D2.

将Laplace算子∆记为∆1 + ∆2, 其中

∆1 =
s∑

i=1

∂2

∂x2
i

, ∆2 =
n∑

i=s+1

∂2

∂x2
i

.

则有D1D1 = D1D1 = ∆1, D2D2 = D2D2 = ∆2, 且∆ = ∆1 + ∆2 = D1D1 + D2D2.

§3 k-向量正则函数

对于f(x) =
∑
A

fA(x)eA ∈ C(Ω , C(Vn,s)), 引入算子

Ti(f(x)) =
∑

A

(−1)δi,AfA(x)eA,

其中δi,A =

{
1, 若 i ∈ A,

0. 若 i 6∈ A.

定定定理理理3.1 对于任意的m ∈ {1, · · · , n}, i ∈ {1, · · · , s} , j ∈ {s + 1, · · · , n} , α ∈ PN , Ti算
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子满足如下性质

1) TiTjf = TjTif (i 6= j), Tm(Tmf) = f, Tm(fg) = Tm(f)Tm(g),

2) Tm(eαf) = (−1)δm,αeαTmf,

3) D1 [eiTi(f)] = −eiTi(D1f), [Tj(f)ej ]D2 = Tj(fD2)ej .

证证证 1) 当i 6= j时，

TiTjf = (−1)δi,A

[ ∑

A

(−1)δj,AfA(x)eA

]
=

∑

A

(−1)δj,A(−1)δi,AfA(x)eA = TjTif,

当i = j = m时有

Tm(Tmf) = Tm

[ ∑
A

(−1)δm,AfA(x)eA

]
=

∑
A

(−1)2δm,AfA(x)eA =
∑
A

fA(x)eA = f,

对于任意的m有

Tm(fg) = Tm

[ ∑
A

fAeA

∑
B

gBeB

]
=

∑
A,B

(−1)δm,A+BfAgBeAeB =
∑
A

(−1)δm,AfAeA

∑
B

(−1)δm,BgBeB = Tm(f)Tm(g),

2) 当m ∈ α且m ∈ A时有

Tm(eαf) = Tm

[ ∑

A

fA(x)eαeA

]
=

∑

A

fA(x)eαeA,

(−1)δm,αeαTmf = (−1)δm,αeα

[ ∑

A

(−1)δm,AfA(x)eA

]
=

∑

A

fA(x)eαeA.

所以Tm(eαf) = (−1)δm,αeαTmf .

当m ∈ α且m 6∈ A时有

Tm(eαf) = Tm

[ ∑

A

fA(x)eαeA

]
= −

∑

A

fA(x)eαeA,

(−1)δm,αeαTmf = (−1)δm,αeα

[ ∑

A

(−1)δm,AfA(x)eA

]
= −

∑

A

fA(x)eαeA.

所以Tm(eαf) = (−1)δm,αeαTmf .

当m 6∈ α且m ∈ A时有

Tm(eαf) = Tm

[ ∑

A

fA(x)eαeA

]
= −

∑

A

fA(x)eαeA,

(−1)δm,αeαTmf = (−1)δm,αeα

[ ∑

A

(−1)δm,AfA(x)eA

]
= −

∑

A

fA(x)eαeA.

所以Tm(eαf) = (−1)δm,αeαTmf .

当m 6∈ α且m 6∈ A时有

Tm(eαf) = Tm

[ ∑

A

fA(x)eαeA

]
=

∑

A

fA(x)eαeA,

(−1)δm,αeαTmf = (−1)δm,αeα

[ ∑

A

(−1)δm,AfA(x)eA

]
=

∑

A

fA(x)eαeA.

所以Tm(eαf) = (−1)δm,αeαTmf .

3) 由2)可得

D1 [eiTi(f)] =
s∑

k=1

ek
∂ [eiTi(f)]

∂xk
=

∑

k=i

∂Ti(f)
∂xi

+
∑

k 6=i

ekei
∂Ti(f)
∂xk

;
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−eiTi(D1f) = −eiTi(
s∑

k=1

ek
∂f

∂xk
) =

∑

k=i

∂Ti(f)
∂xi

−
∑

k 6=i

eiek
∂Ti(f)
∂xk

;

[Tj(f)ej ]D2 = −
n∑

k=s+1

∂ [Tj(f)ej ]
∂xk

ek =
∑

k=j

∂Tj(f)
∂xj

−
∑

k 6=j

∂Tj(f)
∂xk

ejek;

Tj(fD2)ej = Tj(
n∑

k=s+1

∂f

∂xk
ek)ej =

∑

k=j

∂Tj(f)
∂xj

+
∑

k 6=j

∂Tj(f)
∂xk

ekej .

又由于eiek = −ekei, ejek = −ekej ,故有D1 [eiTi(f)] = −eiTi(D1f), [Tj(f)ej ]D2 = Tj(fD2)ej .

定定定义义义3.2 设λ =
∑

A∈PN

λAeA ∈ C(Vn,s), 其中λA ∈ R, 则称Reλ = λ∅.

由上述定义可知Re(Tiλ) = Reλ.

定定定理理理3.3 若存在i ∈ {1, 2, · · · , n}使得Tiλ = −λ, 则Reλ = 0.

证证证 因为

Tiλ = Ti


λ∅ +

∑

A∈PN,A 6=∅
λAeA


 = λ∅ +

∑

A∈PN,A 6=∅
λATi(eA).

又因为Re(Tiλ) = λ∅, Re(−λ) = −λ∅. 所以λ∅ = −λ∅, 也就是λ∅ = 0, 即Reλ = 0.

对于任意的n维向量k = (k1, · · · , kn) (ki ∈ R), 算子L、R和它们的共轭算子表示为



Lf = D [f ] +
n∑

i=1

kiei

xi
Ti(f),

fR = [f ]D +
n∑

i=1

ki

xi
Ti(f)ei,

(7)





Lf = D [f ] +
n∑

i=1

kiei

xi
Ti(f),

fR = [f ]D +
n∑

i=1

ki

xi
Ti(f)ei.

(8)

定定定义义义3.4 设Ω = {x = (x1, · · · , xn)|xi > 0, i = 1, · · · , n}是Rn中的非空开集. 若函数f ∈
C(r)(Ω , C(Vn,s))(r ≥ 1)且在Ω中满足Lf = 0(fR = 0), 则称f为Ω上的左(右)k-向量正则函数.

注注注1 当k = (0, · · · , 0)时, 定义3.4下的k向量正则函数是Clifford分析中的经典正则函
数[1].

注注注2 当k = (0, · · · , 0,m)时, 若f是定义3.4下的k-向量正则函数, 则函数xm
n f(x)是[13]中

定义的2m-超正则函数.

由于D = D1 + D2, D1 = D1, D2 = −D2, 所以(7)-(8)可以等价写为



L1f = D1 [f ] +
s∑

i=1

kiei

xi
Ti(f),

L2f = D2 [f ] +
n∑

i=s+1

kiei

xi
Ti(f).

(9)



492 高 校 应 用 数 学 学 报 第40卷第4期





fR1 = [f ]D1 +
s∑

i=1

ki

xi
Ti(f)ei,

fR2 = [f ]D2 +
n∑

i=s+1

ki

xi
Ti(f)ei,

(10)

并且L1f = L1f, fR1 = fR1, L2f = −L2f, fR2 = −fR2.
定定定义义义3.5 当函数f ∈ C(r)(Ω , C(Vn,s))(r ≥ 1)且在Ω中满足L1f = 0(fR1 = 0)时, 那么称它

为L1左(R1右)k-向量正则函数. 当其满足L2f = 0(fR2 = 0)时, 那么称它为L2左(R2右)k-向量
正则函数.

定定定义义义3.6 当函数f ∈ C(r)(Ω , C(Vn,s))(r ≥ 1)且在Ω中同时满足L1f = 0与fR2 = 0时, 则
称函数f为Ω上的LR-k-向量正则函数.

接下来讨论k-向量正则函数与几类偏微分方程的解的关系.
定定定理理理3.7 设f =

∑
A

fAeA ∈ C(r)(Ω , C(Vn,s))(r ≥ 2), 则当f是LR-k向量正则函数时, 有




∆1fA −
s∑

i=1

ki

[
ki + (−1)δi,A

]

x2
i

fA = 0,

∆2fA −
n∑

j=s+1

kj

[
kj + (−1)δj,A

]

x2
j

fA = 0.

(11)

证证证

L1L1f = D1


D1 [f ] +

s∑

j=1

kjej

xj
Tj(f)


 +

s∑

i=1

kiei

xi
Ti


D1 [f ] +

s∑

j=1

kjej

xj
Tj(f)


 =

∆1f +
s∑

j=1

D1

[
kjej

xj
Tj(f)

]
+

s∑

i=1

kiei

xi
Ti(D1 [f ]) +

s∑

i,j=1

kikj

xixj
eiTi [ejTj(f)] =

∆1f −
s∑

i=1

ki

x2
i

Ti(f) +
s∑

j=1

kj

xj
D1 [ejTj(f)] +

s∑

i=1

ki

xi
eiTi(D1 [f ]) +

s∑

i,j=1

kikj

xixj
eiTi [ejTj(f)] .

由定理3.1的3)可得
s∑

j=1

kj

xj
D1

[
ejTj(f)

]
= −

s∑

j=1

kj

xj
ejTj(D1f) = −

s∑

i=1

ki

xi
eiTi(D1f),

所以有 L1L1f = ∆1f −
s∑

i=1

ki

x2
i

Ti(f) +
s∑

i,j=1

kikj

xixj
eiTi [ejTj(f)] , 由定理3.1的1)和2)可得

s∑

i,j=1

kikj

xixj
eiTi [ejTj(f)] =

s∑

i,j=1

kikj

xixj
(−1)δi,j eiejTi [Tj(f)] =

s∑

i,j=1;i 6=j

kikj

xixj
eiejTiTjf +

s∑

i=j=1

−ki
2

xi
2

f = −
s∑

i=1

ki
2

xi
2
f,
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所以有

L1L1f = ∆1f −
s∑

i=1

ki

x2
i

Ti(f)−
s∑

i=1

k2
i

x2
i

f = ∆1f −
s∑

i=1

ki

x2
i

[Ti(f) + kif ] =

∑

A

[
∆1fA −

s∑

i=1

ki

[
ki + (−1)δi,A

]

x2
i

fA

]
eA,

因为f是LR-k向量正则函数, 所以L1L1f = 0, 即
∑

A

[
∆1fA −

s∑

i=1

ki

[
ki + (−1)δi,A

]

x2
i

fA

]
eA = 0,

所以

∆1fA −
s∑

i=1

ki

[
ki + (−1)δi,A

]

x2
i

fA = 0.

fR2R2 =


[f ]D2 +

n∑

j=s+1

kj

xj
Tj(f)ej


D2 +

n∑

i=s+1

ki

xi
Ti


[f ]D2 +

n∑

j=s+1

kj

xj
Tj(f)ej


 ei =

f∆2 +




n∑

j=s+1

kj

xj
Tj(f)ej


D2 +

n∑

i=s+1

ki

xi
Ti [(f)D2] ei +

n∑

i,j=s+1

kikj

xixj
Ti [Tj(f)ej ] ei =

f∆2 −
n∑

j=s+1

kj

x2
j

Tj(f) +
n∑

j=s+1

kj

xj
[Tj(f)ej ]D2 +

n∑

i=s+1

ki

xi
Ti [(f)D2] ei+

n∑

i,j=s+1

kikj

xixj
Ti [Tj(f)ej ] ei.

由定理3.1的3), 可得
n∑

j=s+1

kj

xj

[
Tj(f)ej

]
D2 =

n∑

j=s+1

kj

xj
Tj(fD2)ej = −

n∑

i=s+1

ki

xi
Ti(fD2)ej ,

所以有

fR2R2 = f∆2 −
n∑

j=s+1

kj

x2
j

Tj(f) +
n∑

i,j=s+1

kikj

xixj
Ti [Tj(f)ej ] ei,

由定理3.1的1)和2)可得
n∑

i,j=s+1

kikj

xixj
Ti [Tj(f)ej ] ei =

n∑

i,j=s+1

kikj

xixj
(−1)δi,j ejeiTiTj(f) =

n∑

i,j=s+1;i 6=j

kikj

xixj
ejeiTiTj(f)−

n∑

i=j=s+1

ki
2

xi
2
f = −

n∑

i=j=s+1

ki
2

xi
2
f,

所以有

fR2R2 = f∆2 −
n∑

j=s+1

kj

x2
j

Tj(f)−
n∑

j=s+1

kj
2

xj
2
f =

f∆2 −
n∑

j=s+1

kj

x2
j

[Tj(f) + kjf ] =
∑

A

[
fA∆2 −

n∑

i=s+1

kj

[
kj + (−1)δj,A

]

x2
j

fA

]
eA.

因为f是LR-k向量正则函数, 所以fR2R2 = 0, 即
∑

A


fA∆2 −

n∑

j=s+1

kj

[
kj + (−1)δj,A

]

x2
j

fA


 eA = 0,



494 高 校 应 用 数 学 学 报 第40卷第4期

那么fA∆2 −
n∑

j=s+1

kj

[
kj + (−1)δj,A

]

x2
j

fA = 0. 因此(11)得证.

定定定理理理3.8 对于任意的f =
∑
A

fAeA ∈ C(r)(Ω , C(Vn,s))(r ≥ 2), 当f是LR-k向量正则函数,

且fA = gA

n∏
j=1

x
kj(−1)1+δj,A

j 时, 有gA为方程组




∆1gA − 2
∑

i 6∈α1

ki

xi

∂gA

∂xi
+ 2

∑

i∈α1

ki

xi

∂gA

∂xi
= 0,

∆2gA − 2
∑

i 6∈α2

ki

xi

∂gA

∂xi
+ 2

∑

i∈α2

ki

xi

∂gA

∂xi
= 0

(12)

的解.

证证证 由fA = gA

n∏

j=1

x
kj(−1)1+δj,A

j 可得

∆1fA =∆1


gA

n∏

j=1

x
kj(−1)1+δj,A

j


 =

s∑
m=1

∂2
(
gA

n∏
j=1

x
kj(−1)1+δj,A

j

)

∂x2
m

=

s∑
m=1

∂2gA

∂x2
m

n∏

j=1

x
kj(−1)1+δj,A

j + 2
s∑

m=1

∂gA

∂xm

km(−1)1+δj,A

n∏
j=1

x
kj(−1)1+δj,A

j

xm
+

s∑
m=1


gAkm(−1)1+δm,A

[
km(−1)1+δm,A − 1

]
n∏

j=1

x
kj(−1)1+δj,A

j

x2
m


 ,

将fA = gA

n∏

j=1

x
kj(−1)1+δj,A

j 代入(11)可得

∆1fA −
s∑

i=1

ki

[
ki + (−1)δi,A

]

x2
i

fA =

s∑
m=1

∂2gA

∂x2
m

n∏

j=1

x
kj(−1)1+δj,A

j + 2
s∑

m=1

∂gA

∂xm

km(−1)1+δj,A

n∏
j=1

x
kj(−1)1+δj,A

j

xm
+

s∑
m=1


gAkm(−1)1+δm,A

[
km(−1)1+δm,A − 1

]
n∏

j=1

x
kj(−1)1+δj,A

j

x2
m


−

s∑

i=1

ki

[
ki + (−1)δi,A

]
gA

n∏

j=1

x
kj(−1)1+δj,A

j

x2
i

=
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∆1gA + 2
s∑

m=1

∂gA

∂xm

km(−1)1+δj,A

xm
+

s∑
m=1

gAkm

[
km + (−1)δm,A

]

x2
m

−
s∑

i=1

ki

[
ki + (−1)δi,A

]
gA

x2
i

=

∆1gA − 2
s∑

i=1

∂gA

∂xi

ki(−1)δi,A

xi
= 0.

同理可得∆2gA − 2
n∑

i=s+1

∂gA

∂xi

ki(−1)δi,A

xi
= 0, 所以有





∆1gA − 2
s∑

i=1

(−1)δi,Aki

xi

∂gA

∂xi
= 0,

∆2gA − 2
n∑

i=s+1

(−1)δi,Aki

xi

∂gA

∂xi
= 0.

(13)

设A = α1 + α2, 其中α1 ∈ {1, 2, · · · , s}, α2 ∈ {s + 1, · · · , n}, 则
s∑

i=1

(−1)δi,Aki

xi

∂gA

∂xi
=

∑

i 6∈α1

ki∂gA

xi∂xi
−

∑

i∈α1

ki∂gA

xi∂xi
,

n∑

i=s+1

(−1)δi,Aki

xi

∂gA

∂xi
=

∑

i 6∈α2

ki∂gA

xi∂xi
−

∑

i∈α2

ki∂gA

xi∂xi
,

因此(12)成立.
定定定理理理3.9 (广义Stokes公式) 令Ω1是Rs中有界域, Ω2是Rn−s中有界域, ∂Ω1, ∂Ω2分别为Ω1,

Ω2的边界且都为实的定向的光滑曲面. 设f ∈ C(r)(Ω1 × Ω2, C(Vn,s)), g ∈ C(r)(Ω1, C(Vn,s)),
h ∈ C(r)(Ω2, C(Vn,s)). 则有

Re




∫

∂Ω1×∂Ω2

g(xS)dσ1f(xS , xN\S)dσ2h(xN\S)


 =

Re
∫

Ω1×Ω2

[(gR1)(fR2)h + (gR1)f(L2h) + g(L1(fR2))h + g(L1f)(L2h)] dx,

其中dσ1 = ~n1dθS , dσ2 = ~n2dθN\S , ~n1和 ~n2分别是∂Ω1和∂Ω2的外法向量, dθS和dθN\S是RS和

RN\S中的面积微元.
证证证 应用Stokes公式[1], 有
∫

∂Ω1×∂Ω2

gdσ1fdσ2h =
∫

∂Ω1

gdσ1




∫

∂Ω2

fdσ2h


 =

∫

∂Ω1

gdσ1





∫

Ω2

([fD2]h + f [D2h])dxN\S



 =

∫

Ω1

[gD1]





∫

Ω2

([fD2]h + f [D2h])dxN\S



 dxS +

∫

Ω1

gD1





∫

Ω2

([fD2]h + f [D2h])dxN\S



 dxS =

∫

Ω1×Ω2

{[gD1] [fD2]h + [gD1] f [D2h]}dxN\S ∧ dxS+

∫

Ω1×Ω2

gD1 {[fD2]h + f [D2h]}dxN\S ∧ dxS =
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∫

Ω1×Ω2

{[gD1] [fD2]h + [gD1] f [D2h]}dxN\SdxS+

∫

Ω1×Ω2

g {D1 [[fD2]]h + [fD2] [D1h] + [D1f ] [D2h] + fD1 [[D2h]]}dxN\S∧ dxS =

∫

Ω1×Ω2

{[gD1] [fD2]h + [gD1] f [D2h] + gD1 [[fD2]]h + g[D1f ][D2h]}dx,

因为

D1f = L1f −
s∑

i=1

ki

xi
eiTi(f), fD2 = fR2 −

n∑

i=s+1

ki

xi
Ti(f)ei,

gD1 = gR1 −
s∑

i=1

ki

xi
Ti(g)ei, D2h = L2h−

n∑

i=s+1

ki

xi
eiTi(H),

D1(fD2)=L1((f)R2)−L1(
n∑

i=s+1

ki

xi
Ti(f)ei)−

s∑
i=1

ki

xi
eiTi((f)R)+

s∑
i=1

ki

xi
eiTi(

n∑
i=s+1

ki

xi
Ti(f)ei),

则有

∫

∂Ω1×∂Ω2

gdσ1fdσ2h =
∫

Ω1×Ω2





[
gR1 −

s∑

i=1

ki

xi
Ti(g)ei

]
·

fR2 −

n∑

j=s+1

kj

xj
Tj(f)ej


 · h +

[
gR1 −

s∑
i=1

ki

xi
Ti(g)ei

]
· f ·

[
L2h−

n∑
j=s+1

kj

xj
ejTj(h)

]
+

g

[
L1(fR2)−L1(

n∑
j=s+1

kj

xj
Tj(f)ej)−

s∑

i=1

ki

xi
eiTi(fR2) +

s∑
i=1

ki

xi
eiTi(

n∑

j=s+1

kj

xj
Tj(f)ej)


h+

g

[
L1f −

s∑
i=1

ki

xi
eiTi(f)

]
·
[
L2h−

n∑
j=s+1

kj

xj
ejTj(h)

]}
dx =

∫

Ω1×Ω2

[(gR1)(fR2)h + (gR1)f(L2h) + g(L1(fR2))h + g(L1f)(L2h)] dx−

∫

Ω1×Ω2

(gR1)




n∑

j=s+1

kj

xj
(Tj(f)ejh + fejTj(h))


dx−

∫

Ω1×Ω2

s∑

i=1

ki

xi
[Ti(g)ei(fR2) + geiTi(fR2)]h · dx−

∫

Ω1×Ω2

s∑

i=1

ki

xi
[Ti(g)eif + geiTi(f)] (L2h)dx−
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∫

Ω1×Ω2

g


L1(

n∑

j=s+1

kj

xj
Tj(f)ej)h + (L1f)

n∑

j=s+1

kj

xj
ejTj(h)


dx+

∫

Ω1×Ω2





s∑

i=1

ki

xi
Ti(g)ei

n∑

j=s+1

kj

xj
Tj(f)ejh +

s∑

i=1

ki

xi
Ti(g)eif

n∑

j=s+1

kj

xj
ejTj(h) +

g
s∑

i=1

ki

xi
eiTi(

n∑

j=s+1

kj

xj
Tj(f)ej)h + g

s∑

i=1

ki

xi
eiTi(f)

n∑

j=s+1

kj

xj
ejTj(h)



 dx =

∫

Ω1×Ω2

[(gR1)(fR2)h + (gR1)f(L2h) + g(L1(fR2))h + g(L1f)(L2h)] dx−

I1 − I2 − I3 − I4 + I5.

对于I1有

I1 =
∫

Ω1×Ω2

(gR1)




n∑

j=s+1

kj

xj
(Tj(f)ejh + fejTj(h))


dx,

ReI1 =
∫

Ω1×Ω2

n∑

j=s+1

Re
[
gR1

kj

xj
(Tj(f)ejh + fejTj(h))

]
dx,

对于∀s + 1 ≤ j ≤ n, 由定理3.1, 有

Tj

[
gR1

kj

xj
(Tj(f)ejh + fejTj(h))

]
= gR1

kj

xj
[Tj [Tj(f)ejh] + Tj [fejTj(h)]] =

gR1
kj

xj
[f(−ej)Tj(h) + Tj(f)(−ej)h] =

−
[
gR1

kj

xj
(Tj(f)ejh + fejTj(h))

]
,

由定理3.3可得Re
[
gR1

kj

xj
(Tj(f)ejh + fejTj(h))

]
= 0, 因此ReI1 = 0.

对于I2有

I2 =
∫

Ω1×Ω2

s∑

i=1

ki

xi
[Ti(g)ei(fR2) + geiTi(fR2)]h · dx,

ReI2 =
∫

Ω1×Ω2

s∑

i=1

Re
[

ki

xi
[Ti(g)ei(fR2) + geiTi(fR2)]h

]
dx,

对于∀1 ≤ i ≤ s, 由定理3.1有

Ti

[
ki

xi
[Ti(g)ei(fR2) + geiTi(fR2)]h

]
=

ki

xi

[
Ti [Ti(g)ei(fR2)] + Ti [geiTi(fR2)]

]
h =

ki

xi
[g(−ei)Ti(fR2) + Ti(g)(−ei)(fR2)]h =

−
[

ki

xi
[Ti(g)ei(fR2) + geiTi(fR2)]h

]
,

由定理3.3可得Re
[

ki

xi
[Ti(g)ei(fR2) + geiTi(fR2)]h

]
= 0, 因此ReI2 = 0.
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对于I3有

I3 =
∫

Ω1×Ω2

s∑

i=1

ki

xi
[Ti(g)eif + geiTi(f)] (L2h)dx,

ReI3 =
∫

Ω1×Ω2

s∑

i=1

Re
[ki

xi
[Ti(g)eif + geiTi(f)] (L2h)

]
dx,

对于∀1 ≤ i ≤ s, 由定理3.1, 有

Ti

[ki

xi
[Ti(g)eif + geiTi(f)] (L2h)

]
=

ki

xi

[
Ti [Ti(g)eif ] + Ti [geiTi(f)]

]
(L2h) =

ki

xi

[
g(−ei)Ti(f) + Ti(g)(−ei)f

]
(L2h) =

−
[ki

xi
[Ti(g)eif + geiTi(f)] (L2h)

]
,

由定理3.3可得Re
[ki

xi
[Ti(g)eif + geiTi(f)] (L2h)

]
= 0, 因此ReI3 = 0.

对于I4有

I4 =
∫

Ω1×Ω2

g


L1(

n∑

j=s+1

kj

xj
Tj(f)ej)h + (L1f)

n∑

j=s+1

kj

xj
ejTj(h)


dx,

ReI4 =
∫

Ω1×Ω2

n∑

j=s+1

kj

xj
Re

[
g [L1(Tj(f)ej)h + g(L1f)ejTj(h)]

]
dx,

对于∀s + 1 ≤ j ≤ n, 由定理3.1有
Tj

[
g [L1(Tj(f)ej)h + g(L1f)ejTj(h)]

]
= g [TjL1(Tj(f))(−ej)Tj(h) + Tj(L1f)(−ej)h] ,

因为Tj(L1f) = L1(Tj(f)), 有
g [TjL1(Tj(f))(−ej)Tj(h) + Tj(L1f)(−ej)h] =

−g
[
Tj(Tj(L1f))ejTj(h) + L1(Tj(f))ejh

]
=

−g
[
(L1f)ejTj(h) + L1(Tj(f))ejh

]
,

由定理3.3可得Re
[
g [L1(Tj(f)ej)h + g(L1f)ejTj(h)]

]
= 0, 因此ReI4 = 0.

对于I5有

I5 =
s∑

i=1

ki

xi

n∑

j=s+1

kj

xj

∫

Ω1×Ω2

[
Ti(g)eiTj(f)ejh + Ti(g)eifejTj(h)+

geiTi(Tj(f)ej)h + geiTi(f)ejTj(h)
]
dx,

ReI5 =
s∑

i=1

ki

xi

n∑

j=s+1

kj

xj

∫

Ω1×Ω2

Re
[
Ti(g)eiTj(f)ejh + Ti(g)eifejTj(h)+

geiTi(Tj(f)ej)h + geiTi(f)ejTj(h)
]
dx,
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对于∀1 ≤ i ≤ s,∀s + 1 ≤ j ≤ n, 由定理3.1有
Ti [Ti(g)eiTj(f)ejh + Ti(g)eifejTj(h) + geiTi(Tj(f))ejh + geiTi(f)ejTj(h)] =

g(−ei)Ti(Tj(f))ejh + g(−ei)Ti(f)ejTj(h) + Ti(g)(−ei)Tj(f)ejh + Ti(g)(−ei)fejTj(h) =

− [geiTi(Tj(f))ejh + geiTi(f)ejTj(h) + Ti(g)eiTj(f)ejh + Ti(g)eifejTj(h)] ,

Tj [Ti(g)eiTj(f)ejh + Ti(g)eifejTj(h) + geiTi(Tj(f))ejh + geiTi(f)ejTj(h)] =

Ti(g)eif(−ej)Tj(h) + Ti(g)eiTi(f)(−ej)h + geiTi(f)(−ej)Tj(h) + geiTj(Ti(f))(−ej)h =

− [Ti(g)eifejTj(h) + Ti(g)eiTj(f)ejh + geiTi(f)ejTj(h) + geiTi(Tj(f))ejh] ,

由定理3.3可得
Re

[
Ti(g)eiTj(f)ejh + Ti(g)eifejTj(h) + geiTi(Tj(f)ej)h + geiTi(f)ejTj(h)

]
= 0.

因此ReI5 = 0. 于是

Re




∫

∂Ω1×∂Ω2

gdσ1fdσ2h


 =

Re
∫

Ω1×Ω2

[(gR1)(fR2)h + (gR1)f(L2h) + g(L1(fR2))h + g(L1f)(L2h)] dx.

推推推论论论3.10 当gR1 = 0, L2h = 0, L1f = 0, fR2 = 0时, 有

Re

[ ∫

∂Ω1×∂Ω2

gdσ1fdσ2h

]
= 0.
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Properties of k-vector monogenic functions and related operators in
universal Clifford analysis
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Abstract: In this paper, the Ti operator in universal Clifford analysis is defined and the commu-

tative properties of Ti operator and Dirac operator are studied firstly. Then the L and R operator are

constructed by Dirac operator and Ti operator. On the basis, the k-vector monogenic function whose

value is on universal Clifford algebra is defined, and the relationship between k-vector monogenic func-

tion and other monogenic function classes with harmonic functions is studied. Finally, the generalized

Stokes formula related to L and R operators in the universal Clifford analysis space is proved, which

is an important basis for finding the integral representation of k-vector monogenic functions.

Keywords: universal Clifford algebra; L operator; R operator; k-vector monogenic function;

Stokes formula
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