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Fermat型高阶复微分-差分方程的

超越整函数解
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(福建师范大学 数学与统计学院, 福建福州 350117)

摘 要: 该文利用Nevanlinna理论, 把复差分方程和复微分方程结合起来, 研究

了Fermat型高阶复微分-差分方程

P (z)2f (k)(z)2 + [αf(z + η)− βf(z)]2 = Q(z)er(z)

的有限级超越整函数解的问题, 并给出了方程的有穷级超越整函数解的具体形式. 所

得的结果推广了一些近来已有的结果.
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§1 引言及主要结果

设f为复平面C上的亚纯函数. 对于亚纯函数f , 笔者假定读者能够熟练运用Nevanlinna值分

布理论的基本记号和结论, 如T (r, f), N(r, f), m(r, f), N(r, f), · · · , S(r, f)以及亚纯函数f的增

长级ρ(f)等[1-4].

Fermat大定理的研究是非常令人感兴趣的. 如果将Fermat定理改为Fermat型函数方程

fn(z) + gn(z) = 1,

那么Montel[5]得到了当n ≥ 3时, 该方程没有超越整函数解. 但当n = 2时, Gross[6]证明了方

程f2(z) + g2(z) = 1有整函数解f(z) = sin(h(z)), g(z) = cos(h(z)), 其中h(z)是任意整函数. 对

于更一般形式的函数方程fn(z) + gm(z) = 1, Yang[7]证明了若正整数m, n满足 1
m + 1

n < 1, 方

程不存在非常数整函数解. 如果g(z)和f(z)存在某种特殊关系, 例如, g(z)是f(z)的一阶导函数,

Yang和Li[8]考虑了方程f2(z) + f ′2(z) = 1, 得到其具有具体形式f(z) = 1
2

(
λeµz + 1

λe−µz
)
的超

越亚纯解, 其中λ, µ均为非零常数.

近年来, 许多专家学者探讨了有关Fermat型复微分-差分方程的有限级超越整函数解的问

题, 并获得了许多重要且有趣的研究成果[1, 9-21].
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文献[15]考虑了如下两类复微分-差分方程的有限级超越整函数解的问题, 证明了下述定理.

定理1.1[15] 设f(z)是复微分-差分方程

f ′(z)2 + f(z + c)2 = 1

的有限级超越整函数解, 则f(z) = sin(z±Bi), 其中B为常数, c = 2kπ或c = (2k + 1)π, k是整数.

定理1.2[15] 设f(z)是复微分-差分方程

f ′(z)2 + [f(z + c)− f(z)]2 = 1

的有限级超越整函数解, 则f(z) = 1
2 sin(2z + Bi), 其中B为常数, c = kπ + π

2 , k是整数.

2013年, Liu和Yang[16]将定理1.1中的一阶导函数进一步推广到了n阶导函数的情形, 证明了

下述定理.

定理1.3[16] 设f(z)是复微分-差分方程

f (n)(z)2 + f(z + c)2 = 1

的有限级超越整函数解, 则当n是奇数时f(z) = ± sin(aiz + bi), 其中an = ±i, c = kπi
a , k是整数,

b为常数; 当n是偶数时f(z) = ± cos(aiz + bi), 其中an = ±1, c = kπi
a + πi

2a , k是整数, b是常数.

2019年, 刘曼莉, 高凌云[17]推广了[15-16]的上述结果到二阶复微分-差分方程右端为多项式

的情形, 并得到下述结论.

定理1.4[17] 设f(z)是复微分-差分方程

f ′′(z)2 + f(z + c)2 = Q(z)

的有限级超越整函数解, 其中Q(z)为多项式, c 6= 0 ∈ C, 则Q(z) = c1c2为常数, 且f(z)一定满足

f(z) =
1

2a2

[
c1eaz+b + c2e−az−b

]
,

其中a和b为常数, a4 = 1, c = ln(−ia2)+2kπi
a , k是一个整数.

2019年, 曾翠萍, 邓炳茂, 方明亮[21]考虑n阶复微分-差分方程, 推广并改进了定理1.2中的结

果, 得到下述结论.

定理1.5[21] 设α 6= 0, β是常数, f(z)是复微分-差分方程

f (n)(z)2 + [αf(z + c)− βf(z)]2 = 1 (1)

的有限级整函数解, 则

(I) 若f(z)是有限级超越整函数, 那么

(i) 当n是奇数时,

f(z) =
eaz+b − e−az−b

2an
+ d,

其中b, d是常数, k是整数. (i.1) 若α = β, 则an = −2αi, c = (2k+1)πi
a ; (i.2) 若α = −β,

则an = 2αi, c = 2kπi
a , d = 0; (i.3) 若α 6= ±β, 则an = −(α + β)i, c = (2k+1)πi

a , 或

者an = (α− β)i, c = 2kπi
a ;

(ii) 当n是偶数时, 若α = ±β, 则方程(1)没有超越整函数解; 若α 6= ±β, 则

f(z) =
eaz+b + e−az−b

2an
,

其中an =
√

α2 − β2, 或者an = −
√

α2 − β2, c = ln( iβ+an

iα )+i2kπ

a , b是常数, k是整数.
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(II) 若f(z)是多项式, 那么当α = β时, f(z) = Az + B, 其中n = 1时, 有A2(1 + α2c2) = 1,

n ≥ 2时, 有(αAc)2 = 1; 当α 6= β时, f(z) = ± 1
α−β .

2021年, Chen和Lin[9]基于定理1.5中的结果, 讨论了Fermat型复微分-差分方程

P (z)2f (k)(z)2 + [αf(z + η)− βf(z)]2 = er(z) (2)

的有限级超越整函数解, 其中P (z) 6≡ 0是多项式, r(z)是非常数多项式, α 6= 0, β是常数, k是一

个整数并且η ∈ C \ {0}. 他们证明了下述定理1.6.

定理1.6[9] 设f(z)是复微分-差分方程(2)的有限级超越整函数解, 则

(I) P (z)退化为常数, r(z)是次数为1的多项式, 并且

f(z) =
eaz+a0

2Aak
+

ebz+b0

2Abk
+ d, a 6= ±b,

其中A 6= 0, a 6= 0, b 6= 0, d, a0, b0是常数. (I.i) 若α = β, 则ak = iα(eaη−1)
A , bk = iα(1−ebη)

A ;

(I.ii) 若α = −β, 则ak = iα(eaη+1)
A , bk = −iα(1+ebη)

A , d = 0; (I.iii) 若α 6= ±β, 则ak =
iαeaη−iβ

A , bk = iβ−iαebη

A , d = 0.

(II) P (z)退化为常数, r(z)是次数为1的多项式, 并且

f(z) =
eaz+a0

2Aak
+

eaz+b0

2Aak
+ d, b0 6= a0 + 2nπi,

其中A 6= 0, a 6= 0, d, a0, b0是常数, n是整数. (II.i) 若α = β, 则ak = iα(eaη−1)(1+eb0−a0 )
A(1−eb0−a0 )

;

(II.ii) 若α = −β, 则ak = iα(eaη+1)(1+eb0−a0 )
A(1−eb0−a0 )

, d = 0; (II.iii) 若α 6= ±β, 则

ak = (iαeaη−iβ)(1+eb0−a0 )
A(1−eb0−a0 )

, d = 0.

(III) P (z)退化为常数, r(z)是次数为1的多项式, 并且

f(z) =
eaz+a0

Aak
+ d, b0 = a0 + 2nπi,

其中A 6= 0, a 6= 0, d, a0, b0是常数, n是整数. (III.i) 若eaη = β
α , α = β, 则eaη = 1; (III.ii)

若eaη = β
α , α 6= β, 则eaη 6= 1, d = 0.

本文将方程(2)中右端无零点的情形推广为至多有有限个零点的情形, 得到如下主要结果.

定理1.7 设f(z)是复微分-差分方程

P (z)2f (k)(z)2 + [αf(z + η)− βf(z)]2 = Q(z)er(z) (3)

的有穷级超越整函数解, 其中P (z), Q(z)是非零多项式, r(z)是非常数多项式, α 6= 0, β是常数,

k是正整数并且η ∈ C \ {0}, 则
(I) P (z), Q(z)退化为常数, r(z)是次数为1的多项式, 并且

f(z) =
c1eaz+a0

2Aak
+

c2ebz+b0

2Abk
+ d, a 6= ±b,

其中A 6= 0, a 6= 0, b 6= 0, c1 6= 0, c2 6= 0, d, a0, b0是常数. (I.i) 若α = β, 则ak = iα(eaη−1)
A ,

bk = iα(1−ebη)
A ; (I.ii)若α = −β,则ak = iα(eaη+1)

A , bk = −iα(1+ebη)
A , d = 0; (I.iii)若α 6= ±β,

则ak = iαeaη−iβ
A , bk = iβ−iαebη

A , d = 0.

(II) P (z), Q(z)退化为常数, r(z)是次数为1的多项式, 并且

f(z) =
c1eaz+a0

2Aak
+

c2eaz+b0

2Aak
+ d, b0 6= a0 + ln(

c1

c2
) + 2nπi,
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其中A 6= 0, a 6= 0, c1 6= 0, c2 6= 0, d, a0, b0是常数, n是整数. (II.i) 若α = β, 则ak =
iα(eaη−1)(c1+c2e

b0−a0 )
A(c1−c2eb0−a0 )

; (II.ii) 若α = −β, 则ak = iα(eaη+1)(c1+c2e
b0−a0 )

A(c1−c2eb0−a0 )
, d = 0; (II.iii) 若α 6=

±β, 则ak = (iαeaη−iβ)(c1+c2e
b0−a0 )

A(c1−c2eb0−a0 )
, d = 0.

(III) P (z), Q(z)退化为常数, r(z)是次数为1的多项式, 并且

f(z) =
c1eaz+a0

Aak
+ d, b0 = a0 + ln(

c1

c2
) + 2nπi,

其中A 6= 0, a 6= 0, c1 6= 0, c2 6= 0, d, a0, b0是常数, n是整数. (III.i) 若eaη = β
α , α = β,

则eaη = 1; (III.ii) 若eaη = β
α , α 6= β, 则eaη 6= 1, d = 0.

(IV) P (z)退化为常数, Q(z)是非零多项式, r(z)是次数为1的多项式, 并且

f (k)(z) =
Q1(z)er1(z) + Q2(z)er2(z)

2A
,

其中A 6= 0是常数, Q1(z), Q2(z)是非零多项式并满足Q1(z)Q2(z) = Q(z), r1(z), r2(z)中至

少有一个是次数为1的多项式并满足r1(z) + r2(z) = r(z).

(V) P (z), Q(z)是非零多项式, r(z)是非常数多项式, 并且f(z)满足

P (z)2f (k)(z)2 = Q(z)er(z).

下述例子均表明定理1.7中的结论都是可能发生的.

例1.1 若α = β = −1
i(2+2k)

, 并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 3z, 其中c1 = c2 = 1, 代

入方程(3), 则

f (k)(z)2 +
(

1
i (2 + 2k)

f(z + η)− 1
i (2 + 2k)

f(z)
)2

= e3z

存在解f(z) = 1
2ez + 1

2k+1 e2z + 1, 其中A = 1, a = 1, b = 2, e2η − 1 = − 2k

iα , eη − 1 = 1
iα . 显

然a 6= ±b, ak = 1 = iα(eaη−1)
A , bk = 2k = iα(1−ebη)

A .

例1.2 若α = (2−2k)+
√

(2−2k)2−8

4i , β = −α, 并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 3z, 其

中c1 = c2 = 1, 代入方程(3), 则

f (k)(z)2 + (αf(z + η) + αf(z))2 = e3z

存在解f(z) = 1
2ez + 1

2k+1 e2z, 其中A = 1, a = 1, b = 2, e2η +1 = − 2k

iα , eη +1 = 1
iα . 显然a 6= ±b,

ak = 1 = iα(eaη+1)
A , bk = 2k = −iα(1+ebη)

A .

例1.3 若α = 4
i(1−2k)

, β = −i,并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 3z,其中c1 = c2 = 1,

代入方程(3), 则

f (k)(z)2 +
(

4
i (1− 2k)

f(z + η) + if(z)
)2

= e3z

存在解f(z) = 1
2ez + 1

2k+1 e2z, 其中A = 1, a = 1, b = 2, eη = 2
iα , e2η = 1−2k

iα . 显然a 6= ±b,

ak = 1 = iαeaη−iβ
A , bk = 2k = iβ−iαebη

A .

注1.1 例1.1-例1.3说明定理1.7中的情形I是成立的.

例1.4 若α = β =
√

15i+3
20 ,并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 2z+1,其中c1 = c2 = 1,

代入方程(3), 则

f (k)(z)2 +

(√
15i + 3
20

f(z + η)−
√

15i + 3
20

f(z)

)2

= e2z+1
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存在解f(z) = 1
2ez + 1

2ez+1 + 1, 其中A = 1, a = b = 1, a0 = 0, b0 = 1, eη = 20(1−e)

i(1+e)(
√

15i+3)
+ 1,

且n是整数. 显然1 = b0 6= a0 + ln c1
c2

+ 2nπi, ak = 1 = iα(eaη−1)(c1+c2e
b0−a0 )

A(c1−c2eb0−a0 )
.

例1.5 若α =
√

15i+3
20 , β = −

√
15i+3
20 , 并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 2z + 1, 其

中c1 = c2 = 1, 代入方程(3), 则

f (k)(z)2 +

(√
15i + 3
20

f(z + η) +
√

15i + 3
20

f(z)

)2

= e2z+1

存在解f(z) = 1
2ez + 1

2ez+1,其中A = 1, a = b = 1, a0 = 0, b0 = 1, eη = 20(1−e)

i(1+e)(
√

15i+3)
−1,且n是

整数. 显然1 = b0 6= a0 + ln c1
c2

+ 2nπi, ak = 1 = iα(eaη+1)(c1+c2e
b0−a0 )

A(c1−c2eb0−a0 )
.

例1.6 若α = i, β = 2i, 并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 2z + 1, 其中c1 = c2 = 1,

代入方程(3), 则

f (k)(z)2 + (if(z + η)− 2if(z))2 = e2z+1

存在解f(z) = 1
2ez + 1

2ez+1, 其中A = 1, a = b = 1, a0 = 0, b0 = 1, eη = 2− 1−e
1+e , 且n是整数. 显

然1 = b0 6= a0 + ln c1
c2

+ 2nπi, ak = 1 = (iαeaη−iβ)(c1+c2e
b0−a0 )

A(c1−c2eb0−a0 )
.

注1.2 例1.4-例1.6说明定理1.7中的情形II是成立的.

例1.7 若α = β = 5i, 并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 2z, 其中c1 = c2 = 1, 代入方

程(3), 则

f (k)(z)2 + (5if(z + 2πi)− 5if(z))2 = e2z

存在解f(z) = ez + 1, 其中A = 1, a = b = 1, a0 = n = 0, b0 = 0, 且η = 2πi. 显然b0 =

a0 + ln c1
c2

+ 2nπi, eaη = e2πi = 1.

例1.8 若α = 5i, β = 5ei, 并且P (z) ≡ 1, Q(z) = c1c2 ≡ 1, r(z) = 2z, 其中c1 = c2 = 1, 代

入方程(3), 则

f (k)(z)2 + (5if(z + 1)− if(z))2 = e2z

存在解f(z) = ez,其中A = 1, a = b = 1, a0 = n = 0, b0 = 0,且η = 1. 显然b0 = a0+ln c1
c2

+2nπi,

eaη = e 6= 1.

注1.3 例1.7-例1.8说明定理1.7中的情形III是成立的.

例1.9 若α = 1, β = eη − i
√

3, 其中η满足ηeη = i
√

3k, 并且P (z) ≡ 2, Q1(z) = Q2(z) = z,

r1(z) = r2(z) = z, 代入方程(3), 则

4f (k)(z)2 +
(
f(z + η)−

(
eη − i

√
3
)

f(z)
)2

= z2e2z

存在解f(z) = (z − k)ez.

例1.10 若α = 1, β = eη + i, 其中η满足ηeη = i(2 − k), 并且P (z) ≡ 1, Q1(z) = z,

Q2(z) = 1, r1(z) = r2(z) = z, 代入方程(3), 则

f (k)(z)2 + (f(z + η)− (eη + i) f(z))2 = ze2z

存在解f(z) = 1
2 (z − k + 1)ez.

注1.4 例1.9-例1.10说明定理1.7中的情形IV是成立的.

例1.11 若α = β = 1, η = 2nπi, 其中n是整数, 并且P (z) = z, Q(z) = z2, r(z) = 2z, 代入

方程(3), 则

z2f (k)(z)2 + (f(z + 2nπi)− f(z))2 = z2e2z
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存在解f(z) = ez.

注1.5 例1.11说明定理1.7中的情形V是成立的.

§2 一些引理
引理2.1[4] 设fj(z)(j = 1, 2, · · · , n)为复平面上的亚纯函数, fk(z)(k = 1, 2, · · · , n− 1)为非

常数且满足
∑n

j=1 fj ≡ 1和n ≥ 3. 如果fn(z) 6≡ 0且
n∑

j=1

N

(
r,

1
fj

)
+ (n− 1)

n∑

j=1

N (r, fj) < (λ + o(1))T (r, fk),

其中λ < 1, k = 1, 2, · · · , n− 1, 则fn(z) ≡ 1.

引理2.2[4] 设fj(z)(j = 1, 2, 3)为复平面上的亚纯函数, f1(z)为非常数. 如果
∑3

j=1 fj ≡ 1,

且
3∑

j=1

N

(
r,

1
fj

)
+ 2

3∑

j=1

N (r, fj) < (λ + o(1))T (r),

其中λ < 1, T (r) = max1≤k≤n{T (r, fk)}, 则f2(z) ≡ 1或f3(z) ≡ 1.

引理2.3[4] 设f(z)为复平面上的超越亚纯函数, 则

lim
r→∞

T (r, f)
log r

= ∞.

引理2.4[4] 设f(z)为有穷ρ级整函数, z = 0为其k级零点, z1, z2, · · ·为f(z)的非零零点, 则

f(z) = zkP (z)eQ(z),

其中P (z)为f(z)的非零零点的典型乘积, Q(z)为一次数不高于ρ的多项式.

引理2.5[4] 设f1(z), · · ·, fn(z), (n ≥ 2)是亚纯函数, g1(z), · · ·, gn(z)是整函数, 满足下列各

条件

(i)
n∑

j=1

fj(z)egj(z) = 0;

(ii) 当1 ≤ j < k ≤ n时, gj(z)− gk(z)不是常数;

(iii) 当1 ≤ j ≤ n, 1 ≤ h < k ≤ n时,

T (r, fj) = o{T (r, egh−gk)}, r →∞, r 6∈ E,

其中E ⊂ (1,∞)具有线性测度或对数测度, 则fj(z) ≡ 0, j = 1, · · ·, n.

§3 定理1.7的证明

证 假设f(z)是方程(3)的有穷级超越整函数解, 若αf(z + η) − βf(z) 6≡ 0时，则方程(3)可

以改写为[
P (z)f (k)(z) + i(αf(z + η)− βf(z))

] [
P (z)f (k)(z)− i(αf(z + η)− βf(z))

]
= Q(z)er(z). (4)

显然, P (z)f (k)(z) + i(αf(z + η)− βf(z))和P (z)f (k)(z)− i(αf(z + η)− βf(z))均至多只有

有限个零点. 结合(4)和引理2.4, 假设



P (z)f (k)(z) + i(αf(z + η)− βf(z)) = Q1(z)er1(z),

P (z)f (k)(z)− i(αf(z + η)− βf(z)) = Q2(z)er2(z).
(5)
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由(5)可得 



f (k)(z) =
Q1(z)er1(z) + Q2(z)er2(z)

2P (z)
,

αf(z + η)− βf(z) =
Q1(z)er1(z) −Q2(z)er2(z)

2i
,

(6)

其中r1(z), r2(z)为多项式, Q1(z), Q2(z)为非零多项式且满足r(z) = r1(z) + r2(z), Q(z) =

Q1(z)Q2(z). 对(6)的第二式求k阶导, 有

αf (k)(z + η)− βf (k)(z) =
A(z)er1(z) + B(z)er2(z)

2i
, (7)

其中A(z), B(z)由数学归纳法有

A(z) = Q1(z)r′1(z)k + kQ′
1(z)r′1(z)k−1 + · · ·+ Q

(k)
1 (z) + Mk

(
r′1(z), · · · , r

(k)
1 (z)

)
,

B(z) = −
[
Q2(z)r′2(z)k + kQ′

2(z)r′2(z)k−1 + · · ·+ Q
(k)
2 (z) + Nk

(
r′2(z), · · · , r

(k)
2 (z)

)]
,

并且Mk, Nk分别是关于r′1(z), · · · , r
(k)
1 (z), r′2(z), · · · , r

(k)
2 (z)的k − 1次微分多项式. 结合(6)的第

一式和(7)有
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
er1(z)−r2(z+η) − Q1(z + η)

Q2(z + η)
er1(z+η)−r2(z+η)+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z)−r2(z+η) ≡ 1.

(8)

因为r(z)是非常数多项式, 所以r1(z), r2(z)不能同时为常数. 故分下述三种情形讨论.

情形1 若r1(z)是常数且r2(z)是非常数多项式, 则A(z) = Q
(k)
1 (z). 显然er1(z+η)−r2(z+η),

er1(z)−r2(z+η)为非常数. 又 iβQ1(z)P (z+η)+A(z)P (z)P (z+η)
iαP (z)Q2(z+η) 6≡ 0, 否则, (8)可改写为

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z)−r2(z+η) − Q1(z + η)
Q2(z + η)

er1(z+η)−r2(z+η) ≡ 1,

令g = Q1(z+η)
Q2(z+η)e

r1(z+η)−r2(z+η), 利用Nevanlinna第二基本定理及引理2.3, 有

T (r, g) ≤N(r, g) + N

(
r,

1
g

)
+ N

(
r,

1
g + 1

)
+ S(r, g) ≤

N


r,

1
iβQ2(z)P (z+η)+B(z)P (z)P (z+η)

iαP (z)Q2(z+η) er2(z)−r2(z+η)


 + O(log r) + S(r, g) ≤

O(log r) + S(r, g) = S(r, g),

这与g是超越的矛盾, 故 iβQ1(z)P (z+η)+A(z)P (z)P (z+η)
iαP (z)Q2(z+η) 6≡ 0. 同理可得

iβQ2(z)P (z+η)+B(z)P (z)P (z+η)
iαP (z)Q2(z+η) 6≡ 0. 结合(8)及引理2.1有

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z)−r2(z+η) ≡ 1. (9)

显然, r2(z)− r2(z + η)是常数, 由此可以知道deg r2(z) = 1. 令r2(z) = bz + b0, b 6= 0, b0是常数,

则B(z) = −
[
bkQ2(z) + kbk−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
, 代入(9)有

iβQ2(z)P (z + η)−
[
bkQ2(z) + kbk−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
P (z)P (z + η)

iαP (z)Q2(z + η)
e−bη ≡ 1,

也即

iβQ2(z)P (z + η)−
[
bkQ2(z) + kbk−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
×

P (z)P (z + η) ≡ iαP (z)Q2(z + η)ebη.
(10)
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再结合(8)及(9), 可得
iβQ1(z)P (z + η) + Q

(k)
1 (z)P (z)P (z + η)

iαP (z)Q1(z + η)
≡ 1,

也即

iβQ1(z)P (z + η) + Q
(k)
1 (z)P (z)P (z + η) ≡ iαP (z)Q1(z + η). (11)

若P (z)为非常数多项式, Q2(z) = c2为常数, 则由(10)可得

iβc2P (z + η)− bkc2P (z)P (z + η) ≡ iαP (z)c2ebη.

比较上式等式两端的次数可得矛盾.

若Q2(z)为非常数多项式, P (z) = A为常数, 则由(6)可得

f (k)(z) =
Q1(z)er(z)−bz−b0 + Q2(z)ebz+b0

2A
.

这属于定理1.7中的第四种情形.

若P (z), Q2(z)均为非常数多项式, 比较(10)等号两端的次数可得矛盾.

若P (z) = A, Q2(z) = c2均为常数. 假设Q1(z) = c1也为常数, 令er1(z) = c3, 则由(6)可知

f (k)(z) =
c1c3

2A
+

c2

2A
ebz+b0 , f(z) =

c1c3

2Ak!
zk +

c2

2Abk
ebz+b0 + S(z), (12)

其中S(z)是满足deg(S(z)) ≤ k − 1的多项式. 再结合(10)和(11), 可以得到α = β, ebη = 1− Abk

iα .

再根据(6)的第二式以及(12), 易得
f(z + η)− f(z) =

c1c3

2iα
− c2

2iα
ebz+b0 =

c1c3

2Ak!
(z + η)k − c1c3

2Ak!
zk +

c2

2Abk
ebηebz+b0 − c2

2Abk
ebz+b0 + S(z + η)− S(z).

整理可得
c1c3

2Ak!
(z + η)k − c1c3

2Ak!
zk − c1c3

2iα
= S(z)− S(z + η).

比较上式两端的次数即可得出矛盾. 因此, Q1(z)为非常数多项式, 此时由(6)可得

f (k)(z) =
Q(z)
c2

er(z)−bz−b0 + c2ebz+b0

2A
.

这属于定理1.7中的第四种情形.

情形2 若r1(z)是非常数多项式且r2(z)是常数, 此时B(z) = −Q
(k)
2 (z). 则(8)可改写为

iβQ1(z)P (z + η) + A(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er1(z)−r2(z+η) − Q1(z + η)
Q2(z + η)

er1(z+η)−r2(z+η) ≡
iαP (z)Q2(z + η)− iβQ2(z)P (z + η)−B(z)P (z)P (z + η)

iαP (z)Q2(z + η)
.

(13)

接下来分以下两种情形来讨论.

子情形2.1 若iαP (z)Q2(z + η)− iβQ2(z)P (z + η)−B(z)P (z)P (z + η) ≡ 0, 则由(13), 有
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q1(z + η)
er1(z)−r1(z+η) ≡ 1. (14)

显然r1(z)− r1(z + η)是常数, 由此可以知道deg r1(z) = 1. 令r1(z) = az + a0, a 6= 0, a0是常数,

则A(z) = akQ1(z) + kak−1Q′1(z) + · · ·+ Q
(k)
1 (z), 代入(14)可得

iβQ1(z)P (z + η) +
[
akQ1(z) + kak−1Q′1(z) + · · ·+ Q

(k)
1 (z)

]
×

P (z)P (z + η) ≡ iαP (z)Q1(z + η)eaη.
(15)

结合(15)以及情形1的方法可知当P (z)为非常数多项式时可以推出矛盾, 因此接下来只考虑

当P (z)为常数时方程(3)解的情形.
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若Q1(z)为非常数多项式, P (z) = A为常数, 则由(6)可得

f (k)(z) =
Q1(z)eaz+a0 + Q2(z)er(z)−az−a0

2A
.

这属于定理1.7中的第四种情形.

若Q1(z) = c1, P (z) = A均为常数. 假设Q2(z) = c2为常数, 令er2(z) = c4, 则由(6)可知

f (k)(z) =
c1

2A
eaz+a0 +

c2c4

2A
, f(z) =

c1

2Aak
eaz+a0 +

c2c4

2Ak!
zk + T (z), (16)

其中T (z)是满足deg(T (z)) ≤ k−1的多项式. 再结合(15)和假设条件,易知α = β, eaη = 1+ Aak

iα .

再根据(6)的第二式以及(16), 可得
f(z + η)− f(z) =

c1

2iα
eaz+a0 − c2c4

2iα
=

c1

2Aak
eaηeaz+a0 − c1

2Aak
eaz+a0 +

c2c4

2Ak!
(z + η)k − c2c4

2Ak!
zk + T (z + η)− T (z).

整理可得
c2c4

2Ak!
(z + η)k − c2c4

2Ak!
zk +

c2c4

2iα
= T (z)− T (z + η).

比较上式两端的次数即可得出矛盾. 因此Q2(z)为非常数多项式, 此时由(6)可得

f (k)(z) =
c1eaz+a0 + Q(z)

c1
er(z)−az−a0

2A
.

这属于定理1.7中的第四种情形.

子情形2.2 若iαP (z)Q2(z + η)− iβQ2(z)P (z + η)− B(z)P (z)P (z + η) 6≡ 0. 令er2(z) = c4,

则由(13), 有

H11(z)er1(z) + H12(z)er0(z) ≡ 0,

其中r0(z) ≡ 0, 且



H11(z) =
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)c4
− Q1(z + η)

c4Q2(z + η)
er1(z+η)−r1(z),

H12(z) = − iαP (z)Q2(z + η)− iβQ2(z)P (z + η)−B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

.

由引理2.5可知H1j(z) ≡ 0(j = 1, 2). 根据H12(z) ≡ 0可以得到iαP (z)Q2(z + η)− iβQ2(z)P (z +

η)−B(z)P (z)P (z+η) ≡ 0,与假设条件iαP (z)Q2(z+η)−iβQ2(z)P (z+η)−B(z)P (z)P (z+η) 6≡
0矛盾.

情形3 若r1(z), r2(z)均为非常数多项式, 则(8)可改写为
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
er1(z) − Q1(z + η)

Q2(z + η)
er1(z+η)+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z) − er2(z+η) ≡ 0.

(17)

接下来考虑以下三种情形.

子情形3.1 若deg r1(z) > deg r2(z) ≥ 1, 则(17)可改写为

H21(z)er1(z) + H22(z)er0(z) ≡ 0,

其中r0(z) ≡ 0, 且



H21(z) =
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
− Q1(z + η)

Q2(z + η)
er1(z+η)−r1(z),

H22(z) =
iβQ2(z)P (z + η) + B(z)P (z)P (z + η)

iαP (z)Q2(z + η)
er2(z) − er2(z+η).

由引理2.5可知H2j(z) ≡ 0(j = 1, 2). 代入可得deg r1(z) = deg r2(z) = 1, 与假设条件deg r1(z) >
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deg r2(z) ≥ 1矛盾.

子情形3.2 若deg r2(z) > deg r1(z) ≥ 1, 则(17)可改写为

H31(z)er2(z) + H32(z)er0(z) ≡ 0,

其中r0(z) ≡ 0, 且



H31(z) =
iβQ2(z)P (z + η) + B(z)P (z)P (z + η)

iαP (z)Q2(z + η)
− er2(z+η)−r2(z),

H32(z) =
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
er1(z) − Q1(z + η)

Q2(z + η)
er1(z+η).

同理, 由引理2.5可知H3j(z) ≡ 0(j = 1, 2). 代入可得deg r1(z) = deg r2(z) = 1, 与假设条

件deg r2(z) > deg r1(z) ≥ 1矛盾.

子情形3.3 若deg r1(z) = deg r2(z) = n ≥ 1, 令r1(z) = anzn + an−1z
n−1 + · · · + a0,

r2(z) = bnzn + bn−1z
n−1 + · · ·+ b0, 其中an(6= 0), an−1, · · · , a0, bn(6= 0), bn−1, · · · , b0均为常数,

n是整数. 因此, 可以得到r(z) = (an + bn)zn + (an−1 + bn−1)zn−1 + · · ·+ a0 + b0. 因为r(z)是非

常数多项式, 所以对于j = 1, 2, · · · , n, 至少存在一个j, 使得aj + bj 6= 0.

子情形3.3.1 若an 6= bn, 则(17)可改写为

H41(z)er1(z) + H42(z)er2(z) ≡ 0,

其中 



H41(z) =
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
− Q1(z + η)

Q2(z + η)
er1(z+η)−r1(z),

H42(z) =
iβQ2(z)P (z + η) + B(z)P (z)P (z + η)

iαP (z)Q2(z + η)
− er2(z+η)−r2(z).

因此,由引理2.5可知H4j(z) ≡ 0(j = 1, 2). 根据H41(z) ≡ H42(z) ≡ 0,可以得出r1(z +η)−r1(z),

r2(z +η)−r2(z)均为常数,也即deg r1(z) = deg r2(z) = 1. 令r1(z) = az +a0, r2(z) = bz + b0,其

中a 6= 0, a0, b 6= 0, b0是常数且a 6= b. 又因为对j = 1, 2, · · · , n, 至少存在一个j, 使得aj + bj 6= 0,

所以有a 6= −b. 综上, a 6= ±b.

由于r1(z) = az+a0, r2(z) = bz+b0,可以得出A(z) = akQ1(z)+kak−1Q′1(z)+· · ·+Q
(k)
1 (z),

B(z) = −
[
bkQ2(z) + kbk−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
. 将它们代入H4j(z) ≡ 0(j = 1, 2)可得





iβQ1(z)P (z + η) +
[
akQ1(z) + kak−1Q′1(z) + · · ·+ Q

(k)
1 (z)

]
P (z)P (z + η) ≡ iαP (z)Q1(z + η)eaη,

iβQ2(z)P (z + η)−
[
bkQ2(z) + kbk−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
P (z)P (z + η) ≡ iαP (z)Q2(z + η)ebη.

结合(15)以及情形1的方法可知当P (z)为非常数多项式时可以推出矛盾, 因此接下来只考虑

当P (z)为常数时方程(3)解的情形.

若Q1(z) = c1, P (z) = A均为常数. 假设Q2(z) = c2为常数. 此时, 根据上式可知



iβc1A + akc1A
2 ≡ iαc1Aeaη, eaη =

iβ + akA

iα
,

iβc2A− bkc2A
2 ≡ iαc2Aebη, ebη =

iβ − bkA

iα
.

由(6)的第一式有

f (k)(z) =
c1

2A
eaz+a0 +

c2

2A
ebz+b0 , f(z) =

c1

2Aak
eaz+a0 +

c2

2Abk
ebz+b0 + U(z), (18)

其中U(z)是满足deg(U(z)) ≤ k − 1的多项式.
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若α = β, 此时eaη = iα+akA
iα , ebη = iα−bkA

iα . 再结合(6)的第二式以及(18)可知

f(z + η)− f(z) =
c1

2iα
eaz+a0 − c2

2iα
ebz+b0 =

c1

2Aak
eaηeaz+a0 − c1

2Aak
eaz+a0 +

c2

2Abk
ebηebz+b0 − c2

2Abk
ebz+b0 + U(z + η)− U(z).

由上式可推出U(z + η)− U(z) ≡ 0, 也即U(z) ≡ d, 其中d为常数. 因此可得

f(z) =
c1

2Aak
eaz+a0 +

c2

2Abk
ebz+b0 + d.

若α = −β, 此时eaη = −iα+akA
iα , ebη = −iα−bkA

iα . 同理, 结合(6)的第二式以及(18)可

知U(z + η) + U(z) ≡ 0, 也即U(z) ≡ 0. 因此可得

f(z) =
c1

2Aak
eaz+a0 +

c2

2Abk
ebz+b0 .

若α 6= ±β, 此时eaη = iβ+akA
iα , ebη = iβ−bkA

iα . 同理, 结合(6)的第二式以及(18)可知αU(z +

η)− βU(z) ≡ 0, 也即U(z) ≡ 0. 因此可得

f(z) =
c1

2Aak
eaz+a0 +

c2

2Abk
ebz+b0 .

这属于定理1.7中的第一种情形.

若Q1(z) = c1, P (z) = A均为常数, Q2(z)为非常数多项式, 则由(6)可得

f (k)(z) =
c1eaz+a0 + Q(z)

c1
ebz+b0

2A
.

这属于定理1.7中的第四种情形.

若Q1(z)为非常数多项式, P (z) = A为常数, 则由(6)可得

f (k)(z) =
Q1(z)eaz+a0 + Q2(z)ebz+b0

2A
.

这也属于定理1.7中的第四种情形.

子情形3.3.2 若an = bn, 则(17)可改写为

H51(z)er1(z) ≡ 0,

其中

H51(z) =
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
− Q1(z + η)

Q2(z + η)
er1(z+η)−r1(z)+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z)−r1(z) − er2(z+η)−r1(z).

因为er1(z) 6≡ 0, 所以可以知道H51(z) ≡ 0, 也即
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
− Q1(z + η)

Q2(z + η)
er1(z+η)−r1(z)+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z)−r1(z) − er2(z+η)−r1(z) ≡ 0.

(19)

假设n ≥ 2, 则deg (r1(z + η)− r1(z)) = deg (r2(z + η)− r2(z)) = n− 1 ≥ 1. 又因为an = bn, 所

以deg (r2(z + i)− r1(z + j)) ≤ n− 1(i, j = 0, η). 结合(19), 可以分以下四种情形讨论.

若deg (r2(z)− r1(z)) = n − 1且deg (r2(z + η)− r1(z)) = n − 1, 则由r1(z), r2(z)的表达式

可知deg (r1(z + η)− r2(z)) ≤ n − 1. 假设deg (r1(z + η)− r2(z)) = n − 1, 则结合(19)以及引

理2.5可得−1 ≡ 0, 矛盾. 同理, 假设deg (r1(z + η)− r2(z)) < n− 1, 同样结合(19)以及引理2.5可

得−1 ≡ 0, 矛盾.

若deg (r2(z)− r1(z)) = n− 1且deg (r2(z + η)− r1(z)) < n− 1, 则显然

deg (r1(z + η)− r2(z)) = n− 1,
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故结合(19)以及引理2.5可得−Q1(z+η)
Q2(z+η) ≡ 0, 矛盾.

若deg (r2(z)− r1(z)) < n− 1, 则显然

deg (r2(z + η)− r1(z)) = n− 1, deg (r1(z + η)− r2(z + η)) < n− 1,

故(19)可改写为

H61(z)er1(z+η)−r1(z) + H62(z)er0(z) ≡ 0,

其中r0(z) ≡ 0, 且



H61(z) = −Q1(z + η)
Q2(z + η)

− er2(z+η)−r1(z+η),

H62(z) =
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

er2(z)−r1(z).

由引理2.5可知H6i(z) ≡ 0(i = 1, 2). 根据H61(z) ≡ 0可以得到r2(z + η) − r1(z + η) ≡ C1, 也

即r2(z) − r1(z) ≡ C1. 令er2(z)−r1(z) = C, 则同样由H61(z) ≡ 0可推得Q1(z) = −CQ2(z), 将其

代入H62(z) ≡ 0可得
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
+

iCβQ2(z)P (z + η) + CB(z)P (z)P (z + η)
iαP (z)Q2(z + η)

≡ 0,

将Q1(z) = −CQ2(z)代入上式可得
[A(z) + CB(z)]P (z)P (z + η)

iαP (z)Q2(z + η)
≡ 0,

也即A(z) + CB(z) ≡ 0. 结合r2(z) − r1(z) ≡ C1以及Q1(z) ≡ −CQ2(z)可知r
(k)
2 (z) ≡ r

(k)
1 (z)以

及Q
(k)
1 (z) ≡ −CQ

(k)
2 (z).再将(7)中A(z), B(z)的表达式代入A(z) + CB(z) ≡ 0可得A(z) ≡ 0, 也

即

Q1(z)r′1(z)k + kQ′
1(z)r′1(z)k−1 + · · ·+ Q

(k)
1 (z) + Mk

(
r′1(z), · · · , r

(k)
1 (z)

)
≡ 0.

接下来证明A(z) ≡ 0是矛盾的. 由归纳假设可知, 当k = 1时, 有

A1(z) = Q1(z)r′1(z) + Q′1(z) ≡ 0,

也即r1(z) = − lnQ1(z) + C1, 计算可得Q1(z) = eC1e−r1(z), 这显然与Q1(z)是一个多项式矛盾.

当k = 2时, 有

A2(z) = Q1(z)r′1(z)2 + 2Q′1(z)r′1(z) + Q′′1(z) + Q1(z)r′′1 (z) ≡ 0,

也即

[Q1(z)r′1(z) + Q′1(z)]′ + [Q1(z)r′1(z) + Q′1(z)] r′1(z) ≡ 0,

故可得r1(z) = − ln [Q1(z)r′1(z) + Q′1(z)] + C2, 同理可得矛盾. 当k = 3时, 有
A3(z) = Q1(z)r′1(z)3 + 3Q′1(z)r′1(z)2 + 3Q′′1(z)r′1(z) + Q′′′1 (z)+

Q1(z)r′′′1 (z) + 3Q′1(z)r′′1 (z) + 3Q1(z)r′1(z)r′′1 (z) ≡ 0,

也即 [
Q1(z)r′1(z)2 + 2Q′1(z)r′1(z) + Q′′1(z) + Q1(z)r′′1 (z)

]′
+

[
Q1(z)r′1(z)2 + 2Q′1(z)r′1(z) + Q′′1(z) + Q1(z)r′′1 (z)

]
r′1(z) ≡ 0,

故可得r1(z) = − ln
[
Q1(z)r′1(z)2 + 2Q′1(z)r′1(z) + Q′′1(z) + Q1(z)r′′1 (z)

]
+C3, 同理可得矛盾. 假

设当k = l − 1时, 同理可得矛盾, 则当k = l时, 根据上述规律, 有

[Al−1(z)]′ + [Al−1(z)] r′1(z) ≡ 0,
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其中Al−1(z)是关于r′1(z)的l − 1次微分多项式. 故可得r1(z) = − ln [Al−1(z)] + Cl, 同理可得矛

盾.

若deg (r2(z)− r1(z)) < n − 1且deg (r2(z + η)− r1(z)) < n − 1, 结合(19)以及引理2.5可

得−Q1(z+η)
Q2(z+η) ≡ 0, 矛盾.

因此, 可以得出n = 1. 假定r1(z) = az + a0, r2(z) = az + b0, 其中a 6= 0, a0, b0是常数. 此

时, 显然r(z) = r1(z) + r2(z)是非常数多项式.

由于r1(z) = az+a0, r2(z) = az+b0,可以得出A(z) = akQ1(z)+kak−1Q′1(z)+· · ·+Q
(k)
1 (z),

B(z) = −
[
akQ2(z) + kak−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
. 将它们代入(19)可得

iβQ1(z)P (z + η) + A(z)P (z)P (z + η)
iαP (z)Q2(z + η)

− Q1(z + η)
Q2(z + η)

eaη+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

eb0−a0 − eaη+b0−a0 ≡ 0.

(20)

子情形3.3.2.1 设P (z)为非常数多项式.

若Q1(z) = c1为常数, Q2(z)为非常数多项式, 此时A(z) = c1a
k. 将其代入(20)可得

iβc1P (z + η) + c1a
kP (z)P (z + η)

iαP (z)Q2(z + η)
ea0−b0−aη+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

e−aη − c1

Q2(z + η)
ea0−b0 ≡ 1.

(21)

显然 c1
Q2(z+η)e

a0−b0为非常数. 故由引理2.2可知 iβQ2(z)P (z+η)+B(z)P (z)P (z+η)
iαP (z)Q2(z+η) e−aη ≡ 1或者

iβc1P (z+η)+c1akP (z)P (z+η)
iαP (z)Q2(z+η) ea0−b0−aη ≡ 1. 假设 iβQ2(z)P (z+η)+B(z)P (z)P (z+η)

iαP (z)Q2(z+η) e−aη ≡ 1, 则可得

iβQ2(z)P (z+η)−
[
akQ2(z) + kak−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
P (z)P (z+η) ≡ iαP (z)Q2(z+η)eaη,

比较上式两端次数可得矛盾. 因此由引理2.2可知 iβc1P (z+η)+c1akP (z)P (z+η)
iαP (z)Q2(z+η) ea0−b0−aη ≡ 1, 再结

合(21)可知

iβQ2(z)P (z +η)−
[
akQ2(z) + kak−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
P (z)P (z +η) ≡ iαc1P (z)eaη+a0−b0 .

比较上式等号两端的次数可得矛盾.

若Q2(z) = c2为常数, Q1(z)为非常数多项式, 此时B(z) = −c2a
k. 将其代入(20)可得

iβQ1(z)P (z + η) + A(z)P (z)P (z + η)
ic2αP (z)

ea0−b0−aη+

iβc2P (z + η)− c2a
kP (z)P (z + η)

ic2αP (z)
e−aη − Q1(z + η)

c2
ea0−b0 ≡ 1.

(22)

可以用同样的方法得到矛盾.

若Q1(z), Q2(z)均为非常数多项式, 则(20)可改写为
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
ea0−b0−aη+

iβQ2(z)P (z + η) + B(z)P (z)P (z + η)
iαP (z)Q2(z + η)

e−aη − Q1(z + η)
Q2(z + η)

ea0−b0 ≡ 1.

(23)

显然, iβQ2(z)P (z+η)+B(z)P (z)P (z+η)
iαP (z)Q2(z+η) e−aη为非常数. 否则, 比较次数即可推得矛盾, 故由引理2.2可

知−Q1(z+η)
Q2(z+η)e

a0−b0 ≡ 1, 或者 iβQ1(z)P (z+η)+A(z)P (z)P (z+η)
iαP (z)Q2(z+η) ea0−b0−aη ≡ 1. 假设−Q1(z+η)

Q2(z+η)e
a0−b0 ≡

1, 则可推出Q1(z + η) ≡ −Q2(z + η)eb0−a0 , 代入(20)可得

2akQ1(z) + 2kak−1Q′1(z) + · · ·+ 2Q
(k)
1 (z) ≡ 0,
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可推出Q1(z) ≡ 0, 这与Q1(z)是非常数多项式矛盾. 故可知
iβQ1(z)P (z + η) + A(z)P (z)P (z + η)

iαP (z)Q2(z + η)
ea0−b0−aη ≡ 1,

再结合(23)可得



iβQ2(z)P (z + η)− P (z)P (z + η)×
[
akQ2(z) + kak−1Q′2(z) + · · ·+ Q

(k)
2 (z)

]
≡ iαP (z)Q1(z + η)eaη+a0−b0 ,

iβQ1(z)P (z + η) + P (z)P (z + η)×
[
akQ1(z) + kak−1Q′1(z) + · · ·+ Q

(k)
1 (z)

]
≡ iαP (z)Q2(z + η)eaη+b0−a0 ,

由此可得deg(Q1(z)) = deg(Q2(z)), 再比较上述式子等号左右两端的增长极可得矛盾.

若Q1(z) = c1, Q2(z) = c2均为常数, 此时A(z) = c1a
k, B(z) = −c2a

k. 将其代入(20)可得

akP (z)P (z + η)
[
c1 − c2eb0−a0

] ≡ [iαP (z)eaη − iβP (z + η)]
[
c1 + c2eb0−a0

]
,

假设c1 − c2eb0−a0 = 0, 可知iαP (z)eaη − iβP (z + η) ≡ 0, 即可推出P (z) ≡ 0或者P (z) = A为非

零常数, 与假设矛盾. 假设c1 − c2eb0−a0 6= 0, 则比较上式等号左右两端的增长级可得矛盾.

子情形3.3.2.2 设P (z) = A为非零常数.

若Q1(z) = c1为常数, Q2(z)为非常数多项式, 则由(6)可得

f (k)(z) =
c1eaz+a0 + Q(z)

c1
eaz+b0

2A
.

这属于定理1.7中的第四种情形.

若Q2(z) = c2为常数, Q1(z)为非常数多项式, 则同理可得

f (k)(z) =
Q(z)
c2

eaz+a0 + c2eaz+b0

2A
.

这也属于定理1.7中的第四种情形.

若Q1(z), Q2(z)均为非常数多项式, 则由(6)可得

f (k)(z) =
Q1(z)eaz+a0 + Q2(z)eaz+b0

2A
.

这也属于定理1.7中的第四种情形.

若P (z) = A, Q1(z) = c1, Q2(z) = c2均为常数, 此时A(z) = c1a
k, B(z) = −c2a

k. 将其代

入(21)可得

akA
[
c1 − c2eb0−a0

] ≡ [iαeaη − iβ]
[
c1 + c2eb0−a0

]
. (24)

假设c1 − c2eb0−a0 = 0, 则由(24)可知2c1 [iαeaη − iβ] = 0, 也即eaη = β
α . 此时

f (k)(z) =
c1

2A
eaz+a0 +

c2

2A
eaz+b0 =

c1

A
eaz+a0 , f(z) =

c1

Aak
eaz+a0 + V (z), (25)

其中V (z)是满足deg(V (z)) ≤ k − 1的多项式.

若α = β, 则eaη = 1. 再结合(6)的第二式以及(25)可知

f(z + η)− f(z) =
c1

2iα
eaz+a0 − c2eb0−a0

2iα
eaz+a0 =

c1

Aak
eaηeaz+a0 − c1

Aak
eaz+a0 + V (z + η)− V (z).

由上式可推出V (z + η)− V (z) ≡ 0, 也即V (z) ≡ d, 其中d为常数. 因此可得

f(z) =
c1

Aak
eaz+a0 + d.

若α 6= β, 此时eaη = β
α . 同理, 结合(6)的第二式以及(25)可知αV (z + η) − βV (z) ≡ 0, 也
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即V (z) ≡ 0. 因此可得

f(z) =
c1

Aak
eaz+a0 .

这属于定理1.7中的第三种情形.

假设c1 − c2eb0−a0 6= 0, 则由(24)可知ak =
(iαeaη−iβ)(c1+c2e

b0−a0)
A(c1−c2eb0−a0) . 由(6)的第一式有

f (k)(z) =
c1

2A
eaz+a0 +

c2

2A
eaz+b0 , f(z) =

c1

2Aak
eaz+a0 +

c2

2Aak
eaz+b0 + W (z), (26)

其中W (z)是满足deg(W (z)) ≤ k − 1的多项式.

若α = β, 此时eaη =
akA(c1−c2e

b0−a0)
iα(c1+c2eb0−a0) + 1, 再结合(6)的第二式以及(26)可知

f(z + η)− f(z) =
c1

2iα
eaz+a0 − c2

2iα
eaz+b0 =

c1

2Aak
eaηeaz+a0 − c1

2Aak
eaz+a0 +

c2

2Aak
eaηeaz+b0 − c2

2Aak
eaz+b0 + W (z + η)−W (z).

由上式可推出W (z + η)−W (z) ≡ 0, 也即W (z) ≡ d, 其中d为常数. 因此可得

f(z) =
c1

2Aak
eaz+a0 +

c2

2Aak
eaz+b0 + d.

若α = −β, 此时eaη =
akA(c1−c2e

b0−a0)
iα(c1+c2eb0−a0) − 1. 同理, 结合(6)的第二式以及(26)可知W (z +

η) + W (z) ≡ 0, 也即W (z) ≡ 0. 因此可得

f(z) =
c1

2Aak
eaz+a0 +

c2

2Aak
eaz+b0 .

若α 6= ±β, 此时eaη =
akA(c1−c2e

b0−a0)
iα(c1+c2eb0−a0) + β

α . 同理, 结合(6)的第二式以及(26)可知αW (z +

η)− βW (z) ≡ 0, 也即W (z) ≡ 0. 因此可得

f(z) =
c1

2Aak
eaz+a0 +

c2

2Aak
eaz+b0 .

这属于定理1.7中的第二种情形.

最后, 若αf(z + η)− βf(z) ≡ 0时, 则由(3)可知f(z)一定满足

P (z)2f (k)(z)2 = Q(z)er(z),

其中P (z), Q(z)是非零多项式, r(z)是非常数多项式. 这属于定理1.7中的第五种情形.

综上所述, 定理1.7得证.
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Transcendental entire solutions of Fermat type higher order complex
differential-difference equation

LIU Xin-mei, CHEN Jun-fan

(School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China)

Abstract: By using Nevanlinna theory and combining the complex difference equations with

differential equations, this paper investigates whether the following Fermat type higher order complex

differential-difference equation

P (z)2f (k)(z)2 + [αf(z + η)− βf(z)]2 = Q(z)er(z)

has transcendental entire solutions with finite order or not, and obtains the precise form of finite order

transcendental entire solutions of the above equation. The result extends some recent known results.

Keywords: complex differential-difference equations; transcendental entire functions; Nevanlinna

theory
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