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H

ZN( >+2ZN < (A4 o(1)T(r),

HfA<1,T(r) = maX1gkgn{T(7“ )}, U'sz( ) = 18if3(z) =
S13E2.314) ¥ f(2) NPT L A T 4 R 2, T
T
r—oo logr
51382.414 W f(2)NE T p BB, 2 = ONELERT N, 21, 20, - - - NF(2)IAEEE A, N
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ert () sl Sy, X PLEIEEEITRIEE 2 0, 5, (8)7T A5
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18Q2(2)P(2 + 1) + B(2)P(2)P(2 + 1) 1y(e)—razam) _ @1EH) o emymra(aam) — 4
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O(logr) + S(r,g) = S(r,9),

X g R T, PR LB PEPE) o . [

iBQ2(2)P(z+n)+B(2) P(2) P(2+mn) + A
)P B # 0. 456 (8) K5I B2.147

lﬁQQ(z)P(Z + 77) + B(Z)P(Z)P(Z + 77) er2(z)—r2(z+n) =1 (9)
iaP(2)Q2(z +n) -
AR, 72 (2) — ro(z + n) 2 WAL, HILALLANIEdeg ro(2) = 1. 2 ro(2) = bz + by, b # 0, boseH 4,

MB(z) = = [PQa() + k01 Q4() + -+ Qé’“’(z)} INOE
190a(:)P(: + 1) - [HQa(e) + WIQh() 4+ QP POPG )
iaP(2)Q2(z +1n) ¢

el
18Qa(2)P (= +n)— [PFQa(2) + KB Q4(2) + -+ QY (2)] x

P(2)P(z +1n) = iaP(2)Qa(z 4 n)e.
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i8Q1(2)P(z + 1) + Q\ () P(z) P(z + 1)
1aP(z)Q1(z + 77)

=1,

iBQ1(2)P(z+ 1) + Q1" (2) P(2) P(z +n) = iaP(2)Q1 (= + 7). (11)
L P()NEERHZ I, Qo(2) = e NHEEL, W H(10) 7[5
iBcaP(z + 1) — bPcaP(2)P(2z + 1) = iaP(2)coe.
E A b 25 A i PR BT 457 T
HQa(2) NEFHZ I, P(z) = Aij%iﬂl W H1(6)mT 45
F®(z) = Qi(z)e" 70270 + Qy(2)e b”bo'
2A
KJE T e BT R DU RS .
#1P(2), Q2(2)¥INAEF 2 WA, HEL(10)55 5 Wi BB T 157 G .
HP(2) = A, Q2(2) = ¥INFEL KQ1(2) = cr BNEEL, £em(®) = cs, WH(6)FTH

(k) () — 198 | €2 bztby _ac €2 bztbo
FPE =53 aae " O =gq® om0 (12)

ﬁEPS(z)xEé/V%Edeg( ( )) <k-— 1E/J§'Iﬁﬁ ﬁé (10)%[](11) TU\{{F@JO[ _ ﬁ obn — 1 — Abk.
PR (6) 28 — 3R e (12), H 7%
f(Z + T}) — f(z) :% _ Eebz+bo _

21 21
cic cic C2 > C2 P
2114];’! (z+n)k - 2114]:’! 2k + 2Abkel’"eb +oo _ —QAbkeb *o 4 S(z+1n) - S(2).
e n 15
c1c c1c cic
L9 () — S8k = A% g() — 5( ).

P b O VBT R A P G . B, Q1 () RS B2 T, MRS i (6) Al

w (Z)er(z) bz=bo | ¢,pebtbo
[(z) = 54
XJET e ELL 7R RSB IR E .
B2 e (2) RAEH B E TR Hro (2) RHHL, I B(2) = —Q (2). M(S) 'S H
lﬂQl(Z)P(Z +77) + A( ) ( )P(Z +77) rl(z)fr2(z+77) QI(ZJFU) rl(z+77 —ra(z+n) —
iaP(2)Q2(z +n) Qa(z+1m)°
iaP(2)Q2(2 + 1) —iBQ2(2)P(2 +n) — B(2)P(2)P(z + 1)
iaP(2)Q2(z + 1) '
B TR LA PFRE KB
FIER2.1 #HiaP(2)Qa(2 + 1) —i8Qa(2)P(2 + 1) — B(2)P(2)P(z +n) =0, MH(13), A
lﬁQl(Z)P(Z + 77) + A(Z)P(Z)P(Z + 77) rl(z)—rl(z+n) =1 (14)
iaP(2)Q1(z +n) -
B (2) — ri(z +n)EFE, BT PURIEdegr (2) = 1. 27r1(2) = az + ag, a # 0, ap & HL,
WA(z) = a*Q1(2) + ka* ' @1 (2) + -+ Q" (2), 4@(14)%
1BQUP(= + ) + [a*Qi(2) + kat Qi) + -+ Q1 ()] x
P(2)P(z +n) =iaP(2)Q1(z + n)e™.
455 (15) A S A TR 7 V50T R0 2 P (2) R R & £ 2 Ty o] DAHE o7 &, Rk T ok A % 8
M P(2) R BN T (3) iR 1 T

(13)
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EQi(2)NAEHHZ TR, P(2) = ANFEL, WHi(6)mHE

(k) — Ql(z)eaz+a0 + QQ(Z)GT(Z)*azfao
foes 2A .

RJE T EL 7 B YRS .
%Ql(z) =c, P(z) = AIRHE L 1EX11Q2( )= O NEEL A& er2(2) = ¢y, '}”EE( )ﬁ%ﬂ

(k) — 1 jaz+ao C2€4 A az+a0 C2Cq k
/ ()_2Ae +2A () 2Ak +2A/€' +T() (16)
HAT(2) 2 A deg(T(2)) < k— 12 IR, H4 6 15) MR, S%a =06, e Adt,
E*E?E(G)E‘J?ﬁ:ﬁu&(m),;ﬁ e
- — L gaztao _ 2274 _
Flztm) = f(z) = o e 21a =
QZlak Meteter — 2;11ak otTTe 4 2Ak' )~ ;124/; 2+ T(z+n) = T(2).
BT
Co2Cy

CoC. CoC.
(2 ) - 2 o = T(2) — T(2 + ).

| ! 21
Btz b ST YOS 76 LT . BEIEQ (=) M M 2 05, S e (6) 7T 7

FR () = cre*tao 4 Z{;GT(Z)_“_GO
X JE T e BT DU FR S .
FIER2.2 HiaP(2)Q2(z + 1) —iBQ2(2)P(z + 1) — B(2) P(2)P(z +1) # 0. %) = ¢y,
W (13), A

Hiq(2)e"®) 4 Hyg(z)e™®) =0,

Herg(z) =0, H
i8Q1(2) Pz + 1) + AR)P()Pz+n)  Quz+n) by (ermy—ri(2)

Hyi(2) = iaP(2)Q2(z + n)ey csQa(z +m)
His(z) = _iaP(Z)QQ(Z +n) —i16Q2(2)P(z +1n) — B(2)P(2)P(z + 1)
- 10 P(2)Qa(z + 1) '

MG BE2. 57 HIH ;(2) = 0(5 = 1,2). IRIEH12(2) = OMTBIF FliaP(2)Q2(2 + n) — iBQ2(2) P(z +
n)—B(2)P(2)P(z+n) = 0, 5B FMiaP(2)Q2(2+n) —18Q2(2) P(2+n) — B(2) P(2) P(2+n) #
07 J&.
15/3 #iri(2), rz(z)ﬁ]?'ﬂFﬁiﬁglﬁﬁ M(8) T ek '5 N
iaP(z )Q2(Z + 77) T Q)
IBQQ(Z)P(Z + 77) + B( ) (Z) (Z + n)erg(z) _ e'r‘g(ern) =0
iaP(2)Qa(z + 1) o
PR RE LU =M.
Fi1ER3.1 #degri(z) > degra(z) > 1, M)A S A
Hgl(z)e”(z) + HQQ(Z)QTO(Z) =0,

ﬁ\:qj’f‘o( )E O E_
Hon (2) = iQ1(2)P(z + 1) + A(2)P(2)P(z + 1) Q{2 +1) 4 (etm)—ri(2)
21 iaP(2)Q2(z + 1) Q2(Z+77) 7
H22(Z) _ lﬁQQ(Z)P(Z + 77) + B( ) (Z) (Z + 77) erg(z) _ e'rz(Z-H?).

iaP(2)Qz2(z +n)
HEIE2.5F K Hoj(2) = 0(5 = 1,2). AT f3degri(2) = degra(z) = 1, 5B ¥ KM degri(2) >
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degra(z) > 17 JE.
FiER3.2 #degra(z) > degri(z) > 1, MAT) K5 H
Hi(2)e™®) 4+ Hay(2)e™) = 0,
Hrbrg(z) =0, H

18Q2(2)P(z +n) + B(x)P(2)P(z2+10) ) (atm)—ra(2)
Hy () = iaP(2)Q2(z + 1) " ’
Han(2) = 18Q1(2)P(z +n) + A(z)P(2)P(2 +n) or1(2) Qi(z+n) ori (=)

iaP(2)Q2(z + 1) Q2(2 +1n)
@8, 15 B2.50 fHs,(2) = 0 = 1,2). RN fEdegr(2) = degra(z) = 1, S B%

fHdeg ra(2) > degri(2) > 17 JE.

F1ER3.3 fidegri(z) = degra(z) = n > 1, 2r1(2) = an2" + an_12""1 + -+ + ao,
72(2) = bp2" +bp—12" -+ b, HHan (£ 0), an—1, -+, a0, ba(#0), bu—1, -+, boINEALL,
nARERL Ak, FTRAR R (2) = (an + bn)2™ + (an_1 +bn_1)zn—l b tag+bo. BR(2) R
BT, B T = 1,2, n, EATHE A, Wi, 1 by 0.

FIER3.3.1 Fa, # by, MAT)HEE N

H41(2)e”(z) + H42(Z)erz(z) =0,

Horp
Hu(z) = 1BQ1(2)P(z+n) + AR)P()P(z+1)  Quz+1) o am—ri2)
iaP(2)Q2(z +n) T Q) ’
His(2) = i8Q2(2) P(z + 1) + B()P(2)P(z+1) _ 1y(etmy—ra(z)
iaP(2)Q2(z + 1)

A, B3I ER2. 50T M1y (2) = 005 = 1,2). B Hy (2) = Haz(2) = 0, TR (2 +1) — 1 (2),
ro(z+1m) =72 (2) N HHL, Bl degri(2) = degra(z) = 1. 2r1(2) = az +ao, r2(2) = bz + by, H
Ha #0, ag, b # 0, bW H Ha # b. XF N =1,2,--- ,n, BLFIE—A], ifFa; +b; £ 0,
Frllfa # —b. 5L, a # +b.

1T (2) = az+ag, 72(2) = bz+bo, ATLFHA(2) = 0¥ Q1 (2)+ka* Q4 (2)+- -+ QM (2),
B(z) = — [kaz(z) FEPIQY(2) + -+ QY (2 )} BEAURNHY, (2) = 0(j = 1,2) 173

Q1 (2)P(=+ 1) + [a*Qu(2) + ka" Q1 (2) + -+ + QY (2)| PPz + 1) = iaP(2)Qu (= + m)e”
i0Q2(2)P(=+ 1) — [*Qa(2) + k6" Q4(2) + - + Q1Y (2)] P(2)P(z + 1) = iaP(2)Qa(z + m)e"”
45 5 (15) LB TR LG 326 50 024 P (=) 9 A 6 e 95X o] Bt 7 i, Rk ok 1 %08
04 P() A B T (3) R R
#Q1(2) = c1, P(z) = ABINHE. BRKQ2(2) = co N HL. B, #245 b =XnT %0

. kA
150114. + ak01A2 = iOéClAea“n7 e — M
1
i3 —bkA
iBca A — bPea A% = iacy Ae®, 1 = i6 - .
1
H1(6) 28—
¢ az+a c z c az+a C2 2
FO(2) = g0 b T, f(2) = a4 e 4 U, (18)

HU (2) 25 deg(U(2)) < k — 12T,
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Fa= B, Jfern = lateid o iochA iy (6) 15— ALK (18) AT

1 i

C C
fz+n) = f(z) = s—ewtao — 2 gbetbo —

21 2ia
C a az-+a C az-+a C z C z
2A1ak et — 2Ala’fe T+ 2A2bk et e — 2A2bk " + Uz +n) —U(2).
B ERATHEHU (2 + 1) — U(2) = 0, BEIU(2) = d, Hhdhi s Hikars
C z
f(z) = 2A1 kea +a0 + 2A2bk bZ+b0 +d

Fa = —8, Wifern = Zata®A - obn . —lacbUA R g 44(6) 0 55— R L (18)F
MUz +n)+U(z) =0, HAIU (2 )_0. SJARESS

J() = 221’6 e 25121)’9 P
Fio A £, Biifeon = BatA by — 5-0A ggm g (6) (55 A LR (18) AT Ml (= +

n) — BU(z) =0, MEIU(2) = 0. HkA13
f(Z) = 2fllak e®#tao + 222bk ebz-{—bo.
R T E L TH AT

PQ1(2) = 1, P(2) = ABEH, Qu2) AIERBE TR, i (6) 7773

az-+ag % bz+bg
f(k)(z) _ c1e + €

24
X JE T e H L7 R T RS T
HQ()NIRERZ I, P(2) = AJvHE, N (6)r15

k) Qi(z)e**t0 4 Qg(z)el=Hho
f= 24 :

XA JE T L7 A A DU Rh I .
FIER3.3.2 #a, = by, MOAT) TSN
H51(Z)6T1(Z) = O’

Forp
) BUEPE )+ ARPEPE+D) Q4N byin-r(e)
o) WPz + 1) DN +
i8Q2(2)P(z + 1) + B()P(2)P(2 + 1) 1y(2)=ri(2) _ gratem—ri(2)
iaP(2)Q2(z + 1) :

et (2) £ 0, FTLAR] LLAIE Hs, (2) = 0, HA]
1BQ1(2)P(z + 1) + AR PPz +1) Qi +n) ry(etm-mi)
iaP(2)Q2(z + 1) C Qa(z 77)
iﬁQ2(Z)P(z + 77) + B(Z)P<Z)P(Z + 77) er2(2)=r1(2) _ gr2(z+n)—ri(2) =
iaP(2)Q2(z + 1) o
fBeisn > 2, Wdeg (r1(z + 1) — r1(2)) = deg (ra(z + 1) —r2(2)) =n — 1 > 1. X Aa, = by, Bt

Pldeg (r2(z +1i) —r1i(z + ) <n—1(i,5 = 0,n). Z54(19), 7T LA BLUF RS TE B,
tideg (r2(2) —r1(2)) = n — 1Hdeg (ro(z + 1) —11(2)) = n — 1, WHr(2), ro(2)FIFER
Al ideg (r1(z +n) —r2(2)) < n — 1. Rikdeg (r1(z +n) —r2(z)) = n— 1, MEE(19)LL K& 5]
2501 =0, FJ&. FH, fRikdeg (r1(z +n) — r2(2)) < n— 1, FFELE(19) LR 5] #E2.50]
B-1=0, T&E.
#ideg (ro(2) —r1(2)) =n — 1Hdeg (ra(z +n) —r1(2)) <n — 1, B
deg (ri(z +mn) —r2(2)) =n -1,

(19)
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Mk (19) UL B 2. 5] 45 — Lt — o Sp fg

Q2(z+n)
Fideg (ro(z) —r1(2)) <n—1, MR
deg(ro(z+mn) —11(2)) =n—1,deg(r1(z+n) —ra(z+n)) <n-—1,
H(19) AT U5

Hg (2)em M=) 4 Fg, (2)e™0(®) = 0,
Hrrg(z) =0, H

2) — _Q1(2+77) _erg(z n)—r1(z+n)
Hg1(2) = Q2(z +n) ' .
_ iB@Q1(2)P(z + 1) + A(2)P(2) P(z + 1)
Hez(2) = iaP(2)Qa(z + 1) *
1ﬁQ2(2>P(2 + 77) + B(Z)P(Z)P(Z + 77) 67'2(2)—7‘1(2)
iaP(2)Q2(z + 1) '

HH 5| BE2.57 HIHg (2) = 00 = 1,2). RIEHe1(2) = 0FT LLAF Blra(z + 1) — ri(z +n) = C1,
Bllra(z) — ri(2) = C1. %en2(=nG) = ., MFEFEH He () = 0T HERFQ1 (2) = —CQa(2), #43L

RN Hez(2) = 0713
i8Q1(2)P(= + 1) + AR)P(2)P(z + 1) | 1CBQ2(2)P(2 + 1) + CB(x)P(2)P(z + 1)

0P (:)Qa (= + 1) 0P (2)Qa (= + 1) =0
HQ1(z) = —CQa(2) RN EX TS
[A(z) + CB(2)]P(2)P(z +n) _0
iaP(2)Qz2(2 +n) o
tHEIA(2) + CB(2) = 0. §5872(2) — r1(2) = CLULEQ1(2) = —CQa(2) W Hir{® (z) = r{¥) (2)BA
BQW (2) = —0QY (). T (T)H A(2), B(2)iIFIERMNA(2) + CB(2) = 0A[{FA(2) = 0, 1
il

Qi) ()" + RQL () (=) 4+ QP () + My (ri(2), -+ rP(2)) =0
FETRIEA(2) = 027 K. BEEREAT R, 2k = 1,

A1) = Qu)ri(2) + @4(2) =0,
B8 (2) = ~InQi(2) + Cr, HEAHQ(2) = eCre ), BRIA5Q ()R P L IRT &

Mk =25,

Az(2) = Qu(2)r(2)” +2Q1(2)r (2) + Q1 (2) + Qu(2)r{ (2) =0,
el

[Q1(2)r1(2) + Q1 (2)] + [Q1(2)r (2) + Q1 (2)] 7 (2) = 0,
WA r(2) = —In[Q1(2)r1(2) + Q1 (2)] + Co, FIEERIHFJE. 1k = 30, F
A3(2) = Q1(2)r1(2)* + 3Q' (2)r' (2)” +3Q7 (2)r (2) + Q' (2)+
Q1(2)r!" (2) +3Q1 (2)r] (2) + 3Q1(2)r1 (2)r] (2) = 0,

R

[Q1(2)r

[Qi(2)r
B (2) = —In [Q1(2)71(2)* + 2Q1(2)r1 (2) + QY (2) + Q1 (2)r
Wk =1 — 11, FIBATR7 g, W24k = (0, A9 FR R, A

(A1 (2)] + [Ai-a (2)] 11 (2) = 0,

2 +2Q1(2)r1(2) + Q1 (2) + Qi ()] ()] +
1

)? +2Q) (2)r1(2) + Q1 (2) + Qu(2)r{ (2)] 71 (2) = 0,

1(
1(z 1
(2)] + Cs, FAFATF . 1
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H A ()R T (2) 1 — RG220, #AT5r (2) = —In[Ai1(2)] + Gy, RIFLATA57
J&.
trdeg (ra(z) —r1(2)) < n — 1Hdeg (r2(z 4+ 1) —r1(2)) < n — 1, & (19)LL K& 5] #2507
H-Giy = 0. P,
Rk, AT Hn = 1. B5Er(2) = az + ao, 72(2) = az + by, HFa # 0, ag, bo&FHL. I
I, AR (2) = r1(2) + ro(2) 23R H H 2 0zl
171 (2) = azag, ra(2) = az+bo, WTUATHA() = a*Qu(2) +ka* Qi (2) 4+ Q" (2),
B(z) = - [a*Qa(2) + ka* 1 Q4(2) + - + Q1Y (2)] . FEAURA(19) AT 8
1BQ1(2)P(z+n) + A(z)P(2)P(z+1n)  Qi(z+n)
1P (2)Q2(2 + 1) Q2(z+n)
19Qu(P+ )+ BEPEPE+D 10 s ansveao _ g
i P(2)Q2(z + 1)
FIER3.3.2.1 W P(2) AR £ 2 0.
#Q1(2) = cl NHH, Qa(2) WIEHHZ B, I A(2) = cra®. KHAN(20) 747
iberP(z +n) + 1" P()P(z 4 1) ay-by-an .
iaP(2)Q2(z +n) (21)
BQuAP+ )+ BOPEPE+D 0y 6 s,
iaP(2)Qa(2 + 1) Qa(z + 1)

c1_to—bo Yy AR 18Qa(2)P(z4n) 1+ B(2) P(:)P(24n) ,—an — 15§
B et VAR AL e 51 2. 2] e R em ¥ = 18(F&

{Ber P(x-tn) tera* P2)P(atn) ao—bo—an — | 5y BQa()PGAM-BEIPEIP(G+n) | —an — .
EETere e o e ron e LR

iQ2(2)P(z+n)— [akQQ(z) + ka*71Qh(2) + - + Qék)(z)] P(2)P(z+n) = iaP(2)Q2(z+n)e™,
HOR A SR T A . R Ut 3] B2, 2] e P bt PEIPGA) gao—bo—an = 1 4
& (21) ] %0
i0Q2(2)P(+7) - [ Qa(2) + ka" 1Qh(2) + -+ + QY (2)| P(:)P(2+n) = ey P(z)et o0 b0,
e b 2 5 2 R T A
FiQa(2) = co WHAL, Qu(2) NAERHE TR, BA B(2) = —coa®. J4 AN (20) 7173
i8Q1(2)P(z + 1) + A(2)P(2)P(2 + 1)

e+

eao*bt)*mur

icoaP(z) (22)
iBCQP(Z + 77) - CQG/kP(Z)P(z + 77) e _ Ql(’z + 77) eao—bo =1
icoaP(2) o o
i U [RIRER) 7 V245 307 i
#Q1(2), Qa(2) BN B Z T, M (20) 7 55 H
18Q1(2)P(z + 1) + A=) P()P(z + 1) ao—bo—an
iaP(2)Qa2(z +n) (23)
i8Q2(2)P(z + 1) + B()P(2)P(z + 1) _ap _ Q1+ oty — 1
‘ iaP(2)Qa(2 +1n) Qa(2 + 1)
4%, PREPEII BB o—an gk dig. N, LEBABEI AT HEA T I8, #E 31 32,27
Q1(241) qao—bo — 1 gl IBQLEIPE+N+A()P(2)P(e+41) jag—bo—an — 1 (3 Qu(z+1) jag—by —
M=o = 1, B WPIGaGrn e T = L BB g et =

L, MATHEH Q1 (2 + 1) = —Q2(z + n)ebo—% LN (20) 1] 15
2a"Q1(2) + 2ka™ Q1 (2) + - + QQYC)(z) =0,
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AEHRQ1(2) =0, XH5Q: (2)2dEF 2 I T E. WA
18Q1(2)P(z + 1) + A=) P(2)P(2 +1) ap—by—an —

iaP(2)Q2(2z +n)
Faha(23) 18
18Q2(2)P(z +n) — P(2)P(z + n)x

)
)+ o+ Q)] = 1aP(R)Qu (z + et
)P

(2 +m)x
[ale )+ ka QU () + -+ QP (2 )} = iaP(2)Qa(z + n)edT o0,
H I 1S deg(Q1(2)) = deg(Q2(2)), FELAE Bk ﬁ%#ﬁﬁ?ﬁﬂﬁlﬂﬁﬁﬁiﬁﬁ*&jﬁfﬁ
#Q1(2) = c1, Qa(2) = co¥INHEHL, W A(2) = c1a”, B(2) = —coa®. FHAUN(20) 775
a"P(2)P(z +n) [e1 — c2e”™%] = [laP(2)e™ —iBP(z + )] [c1 + coe”™ %],
Be; — cgebo=% = 0, AT HliaP(2)e? —iBP(z +n) = 0, BIA[H#EH P(2) = 080 P(2) = AN3E
TR, SHETE. Biker — coebom0 £ 0, ML N5 40 45 F v R3S K T 137 ) .
F1ER.3.3.2.2 % P(2) = ANIEEF .
HQ1(z) = cl NEHL Q2(2) HAEE B Z T, Wi (6) T3

* Cleaz+a0 4 %f)eaerbo
F®(z) = —

R T BT B DU AR .
HQa(z) = co NHEL, Qi (2) NAEFHZ WX, WA B W] 75

f(k)(z) Qc(;) az+a;A+C a7 +bo
XA R T B L 7 SR DU ARG TR
#Q1(2), Qa(z) ¥R EHZ W, W (6)7T 43
f(k)(z) _ Q1(z)er>+ao —;Qg(z)eaz"'b”.
XA JE T B L 7 ) SR DU RS T ?
HP(z) = A, Q1(2) = c1, Qa2(2) = ¥IATH, W A(2) = c1a®, B(z) = —coa”. #HAR
A (21) A 15

)P (
[0Qa(2) + ka1 Qh (2

) (

( (

ab A [cl - Cer"*aO] = [ice® — if] [cl + czeb"*ao] . (24)
Bibkc) — coebom9%0 =0, W H(24) A %12¢; [ie® —if] = 0, tHRle™ = '6 liel:n)
f(k) (Z) _ 26114eaz+a0 + 202 az+b0 — ZeaeraO, f(Z) 1481k az+a0 + V( ) (25)

SV () il R deg(V(2)) < &~ THE TR,
Fra=p, Wewn = 1. FL#(6) 155K BLJ (25) FT 0

b()*ao
_ — 671 az+ag __ C2€ az-+ag —
G4 = 1(z)= 5o ——o
%e“”e‘”“0 — %eaz“o +V(z+1n)—V(2).
B ERAHERV (24 19) = V(2) =0, BRIV (2) = d, HhdhE . HitbaE
C1

£2) = oo 4
Fa # B, Mite = B [FHL, 454 (6) M58 KL (25) AT laV (2 + 1) — BV (2) = 0,
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BV (2) = 0. Wik
f(z) = et
O 5 L7 )56 = AT
Bt iftey — cacto—a0 £ 0, i1 (24) AT gt = (ol AN reat ) iy 6 gy

A(cl —cqebo— ‘10)
FE) = T g AW, @)
HAW (2) 2 Edeg(W (2)) < k — 12 T
Yic = B3, Pitteon — A(I=e20 ") g e 6) 8 R L (26) T

ia(cl+02e50*“0)

FO(2) = O gaztao | 2 jaztbo

_ _ 671 az+ag 672 az+bg _
fletm) = () = gheestuo - 2
c an az+a c az+a c an az c az
paqr "o T g E T T T A W )~ W)
i TR (2 + 1) = W (2) = 0, BV () = b, By
c az+a e?
F(2) = gobperston . O gt g

tia = —0, Hlifer = % — 1. [AIFE, 454 (6)1 5 =300 & (26) ] JW (2 +

n) + W(z) =0, HEIW (2) = 0. a7
C
1) = i+ e

Fo # £, Wifew = % + 5. mE, g4 (6) M5 = LL & (26) AT FaW (2 +
n) — BW(z) = 0, HEIW (2) = 0. HILATE
fz) = Lflﬁeaﬁao + ﬁeaerbo’

K8 T BT S RS TR

wJE, #Fraf(z+n) — Bf(z) = OFF, W H(3) T %1 f(2)—E Wi /2

P(2)*fP(2)° = Q(2)e"®),

HAP(2), Q) RIEZFZ I, r(2)RIAIEFHZ WA, XE T EHL 7T ALFME TR

g5 LTI, e LTI

Bust B0 R AU B ASOF R I S S E L.
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Transcendental entire solutions of Fermat type higher order complex

differential-difference equation
LIU Xin-mei, CHEN Jun-fan

(School of Mathematics and Statistics, Fujian Normal University, Fuzhou 350117, China)

Abstract: By using Nevanlinna theory and combining the complex difference equations with

differential equations, this paper investigates whether the following Fermat type higher order complex

differential-difference equation

P(2)" {7 (2) + [af (z +1) = B (2)]* = Q(z)e"?

has transcendental entire solutions with finite order or not, and obtains the precise form of finite order

transcendental entire solutions of the above equation. The result extends some recent known results.

Keywords: complex differential-difference equations; transcendental entire functions; Nevanlinna

theory
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