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摘 要: 该文主要研究带可乘白噪声和弱阻尼的非自治Schrödinger格点系统在无穷

序列加权空间(元素的各分量在其范数的权重不完全相同)中的随机吸引子和随机指数

吸引子的存在性. 文中的研究表明在一定条件下原来无穷维系统的解的极限行为可以

用有限个参数来描述, 即原来无穷维的系统最终可退化为有限维系统.
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§1 引 言

吸引子是描述随时间变化的动力系统的状态的长期渐近行为的重要工具. 自治、非自治与

随机动力系统的渐近行为可以用全局吸引子、拉回吸引子与随机吸引子来描述[1-3]. 但无穷维动

力系统的这些吸引子可能是无限维的, 而且它们吸引其它轨道的速率有可能是比较慢的, 不便于

观察. 为了改进以上不足, Eden、Zelik等人引进了具有有限维数与指数率吸引轨道的指数吸引

子、拉回指数吸引子、随机指数吸引子等概念[4-7]. 无穷多个常微分方程组成的格点系统的各类

吸引子自文献[1]问世以来受到了许多学者的关注和研究. 格点系统可以作为有无穷多个节点的

动态网络系统的数学模型.

本文考虑带可乘白噪声和弱阻尼的非自治Schrödinger格点系统{
iduk + [(Au)k + iλkuk + f(|uk|2)uk]dt = gk(t)dt + i(a + bi)uk ◦ dW, t > τ, τ ∈ R,

uk(τ) = ukτ , k ∈ Z, a, b ∈ R,
(1)

其中“i”是虚数单位; 对任意k ∈ Z, uk = uk(t), gk(t) ∈ C; 实参数λk > 0表示弱阻尼; u =

(uk)k∈Z; f ∈ C1(R+,R); W (t)是概率空间(Ω ,F ,P)上的双边实值Wiener过程, Ω = {ω ∈
C(R,R) : ω(0) = 0}, F是Ω上由紧开拓扑生成的Borel σ-代数, P是(Ω ,F)上的Wiener测度;
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“◦”表示Stratonovich意义下的随机项; A是线性耦合算子. 在特殊情况下, 如当(Au)n = 2un −
un+1 − un−1时, (1)可看作是带初值的连续的随机Schrödinger方程

idu + [∆u + iλ(x)u + f(|u|2)u]dt = g(x, t)dt + i(a + bi)u ◦ dW,u(τ, x) = uτ (x), x ∈ R

关于空间变量x的有限差分形式的模拟[8-9]. Schrödinger方程是量子力学的基本方程之一, 用于

描述微观粒子运动状态随时间变化的情况, 它被广泛应用于原子、分子、固体物理、核物理和化

学等多个领域.

系统(1)的相空间是无穷序列空间. 当无穷序列空间中的元素的各分量在其范数的权重不完

全相同时, 就是无穷序列加权空间; 权重满足不同条件时, 对应的加权空间的大小可能会有所不

同[8]. 设正值函数ρ : Z → R+, ∀k ∈ Z, 记ρ(k) = ρk, 无穷序列加权空间l2ρ定义为

l2ρ = {u|u = (uk)k∈Z, uk ∈ C,
∑

k∈Z

ρk|uk|2 < ∞},

其内积和范数定义为

(u, v)ρ =
∑

k∈Z

ρkukvk, ‖u‖2ρ = (u, u)ρ =
∑

k∈Z

ρk|uk|2, u = (uk)k∈Z, v = (vk)k∈Z ∈ l2ρ.

当ρ(·) ≡ 1时, l2ρ为通常的无加权的无穷序列空间l2(元素范数各分量权重相同), 其内积和范数分

别记为(·, ·), ‖ · ‖. l2上的对称线性耦合算子在加权空间l2ρ中一般不再是对称的. 在无穷序列加权

空间中考虑格点系统的动力学行为具有一定的实际和理论意义.

对于gk(t) = gk(与t无关) 且a = b = 0的自治Schrödinger格点系统(1), Karachalios等[8]研究

其在l2及加权空间l2ρ中的全局吸引子的存在性, 但其中的权重函数ρ的限制条件要比本文中的条

件(见下面的(A4))强得多. 近年来, 对于随机Schrödinger格点系统已有不少研究结果, 李扬荣

等[10]在2024年研究了具有自治与随机变量为系数的Schrödinger格点系统在l2中的全局吸引子、

数值吸引子、随机吸引子关于外力项与耗散系数的上、下半连续性; 陈章等[11-12]分别在2022年

与2024年研究了具有时滞的非自治随机Schrödinger格点系统的解确定的Markov转移半群的不

变测度的存在性和小噪声解的大偏差原理. 对于带可乘白噪声的非自治随机Schrödinger格点系

统(1), 崔红珍等[13]、江旭莹等[14]、王碧祥等[15]分别证明了其在l2中随机吸引子与随机指数吸引

子的存在性. 本文将在[8, 13-14]的基础上, 研究系统(1)在加权空间l2ρ中的随机吸引子和随机指

数吸引子的存在性. 由于随机指数吸引子要求有有限维数且指数率吸引轨道, 如其存在, 则随机

吸引子必存在且含于随机指数吸引子中, 从而随机吸引子也是有限维的, 此时原来无穷维系统的

解的极限行为可以用有限个参数来描述, 即原来无穷维的系统最终可退化为有限维系统来处理.

§2给出连续余圈(或连续非自治随机动力系统)、随机吸引子与随机指数吸引子的概念.

§3和§4分别考虑系统(1)在加权空间l2ρ中的随机吸引子和随机指数吸引子的存在性.

§2 基本概念
本节介绍文中涉及到的几个基本概念, 详见文[6, 16]. 设(Ω ,F ,P)为概率空间, (X, ‖ · ‖X)是

可分的Hilbert空间, B为X上的Borel σ-代数. 对于E, F ⊂ X, 定义

dh(E, F ) = sup
u∈E

inf
v∈F

‖u− v‖X

为E到F的Hausdorff半距离. 文中将ω ∈ Ω等同于a.e. ω ∈ Ω .

定义2.1[16] 设(Ω ,F ,P)上的映射簇θt : Ω → Ω , ω → θtω, t ∈ R满足条件: (1) θ0是Ω上
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的恒等映射, 即θ0 = I; (2) 对任意的s, t ∈ R, θt+s = θt ◦ θs; (3) (t, ω) 7→ θtω是可测的; (4)

对∀A ∈ F , t ∈ R, P(A) = P(θtA); 则称(Ω ,F ,P, (θt)t∈R)为度量动力系统. 如果对∀t ∈ R, 均

有θtA = A, θ = (θt)t∈R, 则A是θ不变的. 若对任意θ不变集A ∈ F , 都有P(A) = 0或P(A) = 1, 那

么称(Ω ,F ,P, (θt)t∈R)是遍历的.

定义2.2[16] 称映射Φ : R+×R×Ω×X → X为由R和(Ω ,F ,P, (θt)t∈R)驱动的取值于X中

的连续余圈(连续非自治随机动力系统), 若对∀τ ∈ R, ω ∈ Ω , t, s ∈ R+, 满足下述条件: (1)

Φ(0, τ, ω, ·)是空间X上的恒等映射; (2) Φ(·, τ, ·, ·) : R+ × R × Ω × X → X是(B(R+) × F ×
B(X),B(X))可测的; (3) Φ(t+s, τ, ω, ·) = Φ(t, τ+s, θsω,Φ(s, τ, ω, ·)); (4) Φ(t, τ, ω, ·) : X → X是

连续的. 记为Φ = {Φ(t, τ, ω)}t≥0,τ∈R,ω∈Ω .

定义2.3[16] 称双参数集值映射B : R× Ω → 2X \ ∅, (τ, ω) → B(τ, ω)为X中的(非自治)随

机集, 如果对任意τ ∈ R, x ∈ X, 映射ω → d(x,B(τ, ω))是可测的. 称随机集是有界的(或闭的,

紧的), 如果对任意τ ∈ R, B(τ, ·)是有界的(或闭的, 紧的). 称集族D = {D(τ, ω) : τ ∈ R, ω ∈ Ω}
关于{θt}t∈R是缓增的, 若对任意的ε > 0, ω ∈ Ω , τ ∈ R, 满足

lim
t→∞

e−ε|t|‖D(τ + t, θtω)‖X = lim
t→∞

e−ε|t| supx∈D(τ+t,θtω) ‖x‖X = 0.

记D = D(X)表示X中所有非空缓增子集族的集合.

定义2.4[16] 称集族K0 = {K0(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D为连续余圈Φ的D-可测拉回吸收

集, 若对任意τ ∈ R, ω ∈ Ω , K ∈ D, 满足: (1) K0(τ, ω)关于Ω是F可测, 且在X中是随机集; (2)

存在T = T(K, τ, ω), 当t ≥ T时, 有Φ(t, τ − t, θ−tω, K(τ − t, θ−tω)) ⊆ K0(τ, ω).

定义2.5(随机吸引子)[16] 称随机集K = {K(τ, ω)}τ∈R,ω∈Ω为连续余圈Φ的D-拉回随机吸

引子, 若对∀τ ∈ R, ω ∈ Ω ,有: (1) K(τ, ω)是X中的紧集, 关于ω可测; (2) K是不变的, 即∀t ≥ 0,

Φ(t, τ, ω,K(τ, ω)) = K(t + τ, θtω); (3) K拉回吸引D中的所有集合, 即

lim
t→∞

dh(Φ(t, τ − t, θ−tω, K(τ − t, θ−tω)),K(τ, ω)) = 0,∀K ∈ D(X).

定义2.6(随机指数吸引子)[6] 称随机集H = {H(τ, ω)}τ∈R,ω∈Ω为R和(Ω ,F ,P, (θt)t∈R)驱

动的连续余圈Φ的D-随机指数吸引子, 若对任意τ ∈ R, ω ∈ Ω , 有: (1) H(τ, ω)是X中的紧

集, 关于ω可测; (2) 存在随机变量ζω < ∞, 使得supτ∈R dimf H(τ, ω) ≤ ζω, 其中dimf H(τ, ω)表

示H(τ, ω)的分形维数; (3) Φ(t, τ−t, θ−tω,H(τ−t, θ−tω)) ⊆ H(τ, ω), t ≥ 0; (4)存在常数ϑ > 0使

得对任意K ∈ D, 存在随机变量tK(τ, ω) ≥ 0和ξ(τ, ω, ‖K‖X) > 0满足

dh(Φ(t, τ − t, θ−tω, K(τ − t, θ−tω)),H(τ, ω)) ≤ ξ(τ, ω, ‖K‖X)e−ϑt, t ≥ tK(τ, ω).

§3 Schrödinger格点系统在加权空间中的随机吸引子

本节考虑带可乘白噪声的非自治Schrödinger格点系统(1)在加权空间l2ρ中的随机吸引子的存

在性. 在Ω上定义映射族

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω ,

则(Ω ,F ,P, {θt}t∈R)是遍历度量动力系统[17].

3.1 假设

对系统(1), 做如下假设.
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(A1) A = E∗E = EE∗是线性耦合算子, E的定义为

(Eu)k =
m0∑

l=−m0

dluk+l, ∀u = (uk)k∈Z, |dl| ≤ a0, m0 ∈ N, k ∈ Z,

a0是正常数, E∗是E在l2空间中的共轭;

(A2) ∀k ∈ Z, 0 < λ ≤ λk ≤ λ̂ < +∞, λ, λ̂是两个正常数;

(A3) f ∈ C1(R+,R), f(0) = 0, 并且存在常数f0, p ≥ 0使得f ′(|s|) ≤ f0(1 + |s|p)对∀s ∈ R都成

立;

(A4) 存在正常数ρ, ρ̂, b1, b0使得∀k ∈ Z, 0 < ρ ≤ ρk ≤ ρ̂ < +∞, |ρk±1 − ρk| ≤ b1ρk,

ρk±1 ≤ b0ρk, 其中

0 ≤ b1 ≤ λ

2a0b2b3(a2
0 + 1)(2m0 + 1)2

, b2 = 1 + b0 + b2
0 + · · ·+ bm0−1

0 , b3 = b2 + bm0
0 ;

(A5) g(t) = (gk(t))k∈Z ∈ Cb(R, l2ρ), 且∀ε > 0, ∃I(ε) ∈ N, 使得supt∈R

∑
|k|>I(ε)

ρk|gk(t)|2 < ε, 其

中

Cb(R, l2ρ) = {µ ∈ C(R, l2ρ)|‖µ‖2ρ = sup
t∈R

‖µ(t)‖2ρ = sup
t∈R

∑

k∈Z

ρk|µk(t)|2 < +∞};

(A6) |a| ≤ λ
√

π
32 .

附注3.1 l2等同于ρk ≡ 1(∀k ∈ Z)的加权空间, 条件(A4)中的b1 = 0, b0 = 1, 即条件(A4)自

然满足, 此时无需加上条件(A4), 见文[8, 13-14].

3.2 方程转化

系统(1)可以写成等价的向量形式{
idu + [Au + iλu + f(|u|2)u]dt = g(t)dt + i(a + bi)u ◦ dW, t > τ, τ ∈ R,

u(τ) = uτ = (ukτ )k∈Z, a, b ∈ R,
(2)

式中u = (uk)k∈Z, λu = (λkuk)k∈Z, f(|u|2)u = (f(|uk|2)uk)k∈Z, g(t) = (gk(t))k∈Z, u ◦ dW =

(uk ◦ dW )k∈Z.

称连续随机过程u(t) = u(t, ω) = u(t, τ, ω, u(τ))(t ≥ τ)是(2)的解, 若对∀t > τ , τ ∈ R,

ω ∈ Ω , u(t)满足随机积分方程

u(t) = u(t, τ, ω, u(τ)) = u(τ) +
∫ t

τ

F (u(s))ds + (a + bi)
∫ t

τ

u ◦ dW (s), (3)

其中F (u(t)) = iAu− λu + if(|u|2)u− ig(t),
∫ t

τ
u ◦ dW (s)为Stratonovich意义下的随机积分.

对任意的ω ∈ Ω , t ∈ R,取O-U平稳过程z(θtω) = − ∫ 0

−∞ es(θtω)(s)ds,它满足方程dz(θtω)+
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z(θtω)dt = dW (t), 其中W (t) = W (t, ω) = ω(t). 由文[6, 18]知, z(θtω)关于t连续且满足



limt→∞ e−ε|t||z(θtω)| = lim
t→±∞

|z(θtω)|
t = lim

t→±∞

∫ t
0 z(θsω)ds

t = 0,∀ε > 0,

lim
t→±∞

∫ t
0 |z(θsω)|ds

t = E [|z(ω)|] = 1√
π
,

lim
t→±∞

∫ t
0 |z(θsω)|2ds

t = E
[|z(ω)|2] = 1

2 ,

E[eεz(θsω)] ≤ 4
√

π+3e
3
√

π
, ∀s ∈ R, |ε| ≤ 1,

E[eε
∫ s+r
s

|z(θlω)|dl] ≤ eεr, ∀s ∈ R, r ≥ 0, ε2 ≤ 1,

(4)

其中E表示期望. 对于给定的τ ∈ R, ω ∈ Ω , 引入新变量

ϕ(t, ω) = ϕ(t, τ, ω) = e−(a+bi)z(θtω)u(t, τ, ω) = e−(a+bi)z(θtω)u(t, ω), t ≥ τ,

其中u(t, ω) = u(t, τ, ω, uτ ) = (uk(t, τ, ω, uτ ))k∈Z是(2)的解, 则|uk| = |ϕk|eaz(θtω).

对任意ω ∈ Ω , 记e−(a+bi)z(ω) = s(ω), 则

ϕ(t, ω) = s(θtω)u(t, ω), u(t, ω) = s−1(θtω)ϕ(t, ω), s−1(ω) = e(a+bi)z(ω).

且s(ω)I, s−1(ω)I为l2ρ上的同构, 它们的算子范数满足

‖s−1(ω)I‖L(l2ρ,l2ρ) ≤ |e(a+bi)z(ω)| = eaz(ω), ‖s(ω)I‖L(l2ρ,l2ρ) ≤ |e−(a+bi)z(ω)| = e−az(ω).

于是‖s−1(ω)I‖L(l2ρ,l2ρ)和‖s(ω)I‖L(l2ρ,l2ρ)关于{θt}t∈R都是缓增的. 由于

u(τ, τ, ω, uτ ) = s−1(ω)ϕ(τ, τ, ω, s(ω)uτ ) = s−1(ω)s(ω)uτ = uτ ,

且在Stratonovich随机积分意义下, 有

du(t) = d[s−1(θtω)ϕ(t)] = s−1(θtω)dϕ(t) + (a + bi)s−1(θtω)ϕ(t) ◦ dz(θtω) =

[iAu− λu + if(|u|2)u− ig(t)]dt + (a + bi)u ◦ dW.

从而方程(2)可化为{
ϕ̇ = iAϕ− λϕ + if(|ϕ|2e2az(θtω))ϕ− ig(t)e−(a+bi)z(θtω) + (a + bi)z(θtω)ϕ,

ϕ(τ, ω) = ϕτ (ω) = e−(a+bi)z(ω)uτ , t > τ, a, b, τ ∈ R.
(5)

由此可知, (2)的解u(t) = u(t, τ, ω, uτ )和(5)的解ϕ(t) = ϕ(t, τ, ω, ϕτ )有如下关系:

u(t, τ, ω, uτ ) = s−1(θtω)ϕ(t, τ, ω, s(ω)uτ ) = s−1(θtω)ϕ(t, τ, ω, ϕτ ), ϕτ = s(ω)uτ . (6)

3.3 解的存在唯一性与连续余圈的生成

先证明(5)的解能定义一个连续余圈, 再由(6)可得到随机系统(2)或(3)的解也能确定一个连

续余圈. 注意到(5)中的随机微分方程(RDE)对于给定ω ∈ Ω是确定性的, 则其初值问题的解的存

在唯一性有以下结论.

引理3.1 假设(A1)-(A6)成立, 则对任意的τ ∈ R, ω ∈ Ω , ϕτ ∈ l2ρ, 系统(5)存在唯一

解ϕ(·, τ, ω, ϕτ ) ∈ C1([τ, +∞), l2ρ), ϕ(t, τ, ω, ϕτ )关于ϕτ连续, 关于ω可测, 且解ϕ(t, τ, ω, ϕτ )可以

确定一个由R和(Ω ,F ,P, (θt)t∈R)驱动的取值于l2ρ的连续余圈Φ = {Φ(t, τ, ω)}t≥0, τ∈R, ω∈Ω , 有

Φ(t, τ, ω, ϕτ ) = Φ(t, τ, ω)ϕτ = ϕ(t + τ, τ, θ−τω, ϕτ ), t ≥ 0, τ ∈ R, ω ∈ Ω .

证 记

F̃ (t, ω, ϕ) = iAϕ− λϕ + if(|ϕ|2e2az(θtω))ϕ− ig(t)e−(a+bi)z(θtω) + (a + bi)z(θtω)ϕ. (7)
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(i) 对任意ω ∈ Ω , t ∈ R, ϕ = (ϕk)k∈Z ∈ l2ρ, 则||ϕ||2ρ < +∞, ‖λϕ‖ρ ≤ λ̂||ϕ||ρ < +∞,

‖iAϕ‖ρ = ‖Aϕ‖ρ =

(∑

k∈Z

ρk(Aϕ)2k

) 1
2

≤ ρ̂
1
2

ρ
1
2
(2m0 + 1)2a2

0‖ϕ‖ρ < +∞,

‖f(|ϕ|2e2az(θtω))‖2ρ =
∑

k∈Z

ρk

∣∣∣f(|ϕk|2e2az(θtω))
∣∣∣
2

≤

∑

k∈Z

ρk

∣∣∣f ′(ε|ϕk|2e2az(θtω))
∣∣∣
2

|ϕk|4e4az(θtω)(|ε| ≤ 1) ≤

∑

k∈Z

ρkf2
0

(
1 + |ϕk|2pe2paz(θtω)

)2

|ϕk|4e4az(θtω) ≤

f2
0

ρ

(
1 +

1
ρp
||ϕ||2p

ρ e2paz(θtω)

)2

||ϕ||4ρe4az(θtω),

‖if(|ϕ|2e2az(θtω))ϕ‖ρ ≤ f0

ρ
1
2

(
1 +

1
ρp
||ϕ||2p

ρ e2paz(θtω)

)
||ϕ||3ρe2az(θtω) < +∞,

g(t)e−(a+bi)z(θtω) ∈ l2ρ, (a + bi)z(θtω)ϕ ∈ l2ρ,

由(7)得F̃ (t, ϕ, ω)是从l2ρ到l2ρ的映射. 并且F̃ (t, ϕ, ω)关于(t, ϕ)连续, 关于ω可测.

(ii) 对固定的T > 0, τ ∈ R, ω ∈ Ω . 令Q是l2ρ的有界子集, hQ = supϕ∈Q ‖ϕ‖ρ < ∞.

令h1 = h1(τ, ω, T) = supt∈[τ,τ+T] e2az(θtω). 对任意的ϕ(s) = (ϕ(s)
k )k∈Z ∈ Q, s = 1, 2,有

ρk|ϕ(1)
k |2, ρk|ϕ(2)

k |2 ≤ h2
Q,∀k ∈ Z,

‖iA(ϕ(1) − ϕ(2))‖ρ ≤ ‖A(ϕ(1) − ϕ(2))‖ρ ≤ ρ̂
1
2

ρ
1
2
(2m0 + 1)2a2

0‖ϕ(1) − ϕ(2)‖ρ,

‖f(|ϕ(1)|2e2az(θtω))‖ρ ≤ f0

ρ
1
2

(
1 +

1
ρp

h2p
Q hp

1

)
h2

Qh1,

‖[f(|ϕ(1)|2e2az(θtω))− f(|ϕ(2)|2e2az(θtω))]ϕ(2)‖2ρ ≤
4f2

0

ρ2
(1 +

2p+1

ρp
h2p

Q hp
1)

2h4
Qh2

1‖ϕ(1) − ϕ(2)‖2ρ,
‖i[f(|ϕ(1)|2e2az(θtω))ϕ(1) − f(|ϕ(2)|2e2az(θtω))ϕ(2)]‖ρ ≤
f0

ρ
1
2
(1 +

1
ρp

h2p
Q hp

1)h
2
Qh1‖ϕ(1) − ϕ(2)‖ρ +

2f0

ρ
(1 +

2p+1

ρp
h2p

Q hp
1)h

2
Qh1‖ϕ(1) − ϕ(2)‖ρ =

L(Q,ω,T)‖ϕ(1) − ϕ(2)‖ρ,

其中L(Q,ω,T) = ( f0

ρ
1
2
(1 + 1

ρp h2p
Q hp

1)h
2
Qh1 + 2f0

ρ (1 + 2p+1

ρp h2p
Q hp

1)h
2
Qh1) < +∞. 因此对任意τ ∈ R,

ω ∈ Ω , t ∈ [τ, τ + T], 有‖F̃ (t, ϕ(1), ω)− F̃ (t, ϕ(2), ω)‖ρ ≤ [λ̂ + ρ̂
1
2

ρ
1
2
(2m0 + 1)2a2

0 + L(Q,ω,T) +
√

a2 + b2 supt∈[τ,τ+T] |z(θtω)|]‖ϕ(1) − ϕ(2)‖ρ. 所以F̃ (t, ϕ, ω)关于ϕ满足局部Lipschitz条件. 由抽

象空间中常微分方程解的存在唯一性定理知, 存在Tmax > τ , 使得对任意的τ ∈ R, ω ∈ Ω ,

ϕτ ∈ l2ρ, 系统(5)存在唯一局部解ϕ(·, τ, ω, ϕτ ) ∈ C1([τ, Tmax), l2ρ), 关于ϕτ连续及关于ω可测.

(iii) 证明Tmax = +∞. 在t ∈ [τ, Tmax)内, 做内积((5), ϕ(t))ρ, 取其实部得
d
dt
‖ϕ‖2ρ = 2Re(iAϕ,ϕ)ρ − 2(λϕ, ϕ)ρ − 2Re(ig(t)e−(a+bi)z(θtω), ϕ)ρ + 2az(θtω)‖ϕ‖2ρ,

其中

(Aϕ,ϕ)ρ =
∑

k∈Z

(Eϕ)k(E(ρϕ))k =
∑

k∈Z

ρk|(Eϕ)k|2 +
∑

k∈Z

(Eϕ)k[(E(ρϕ))k − ρk(Eϕ)k],
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ρk+l − ρk ≤ b1ρk+l−1 + b1ρk+l−2 + · · ·+ b1ρk ≤ (1 + b0 + · · ·+ bm0−1
0 )b1ρk = b1b2ρk.

|
∑

k∈Z

(Eϕ)k[(E(ρϕ))k − ρk(Eϕ)k]| ≤ a0b1b2b3(a2
0 + 1)(2m0 + 1)2

2
‖ϕ‖2ρ =

b4

2
‖ϕ‖2ρ,

这里b4 = a0b1b2b3(a2
0 + 1)(2m0 + 1)2. 则由(A4)可知, b4 ≤ 1

2λ. 从而有

2Im(Aϕ,ϕ)ρ ≥ −2|
∑

k∈Z

(Eϕ)k[(E(ρϕ))k − ρk(Eϕ)k]| ≥ −b4‖ϕ‖2ρ,

Re(ig(t)e−(a+bi)z(θtω), ϕ)ρ ≤
‖g‖2ρ

λ
e−2az(θtω) +

λ

4
‖ϕ‖2ρ, t ∈ [τ, Tmax).

可得
d
dt
‖ϕ‖2ρ ≤

(
b4 − 3

2
λ + 2|a||z(θtω)|

)
‖ϕ‖2ρ +

2
λ
‖g‖2ρe−2az(θtω) ≤

(−λ + 2|a||z(θtω)|) ‖ϕ‖2ρ +
2
λ
‖g‖2ρe−2az(θtω), t ∈ [τ, Tmax). (8)

对(8)在[τ, t](τ ≤ t < Tmax)上用Gronwall不等式, 可得

‖ϕ(t, τ, ω, ϕτ )‖2ρ ≤ e
∫ t
τ
(−λ+2|a||z(θsω)|)ds‖ϕτ‖2ρ +

2
λ
‖g‖2ρ

∫ t

τ

e
∫ t
r
(−λ+2|a||z(θsω)|)ds−2az(θrω)dr. (9)

当t为有限数时, ||ϕ(t, τ, ω, ϕτ )||2ρ有限, 这表明Tmax = +∞, 所以ϕ(t, τ, ω, ϕτ )是方程(5)的全局

解. 证毕.

令映射S : Ω × l2ρ → l2ρ为

S(ω, u) = s(ω)u = ϕ, ω ∈ Ω , u = (uk)k∈Z, ϕ = (ϕk)k∈Z ∈ l2ρ, (10)

则S−1(ω, ϕ) = s−1(ω)ϕ = u, 且对任意ω ∈ Ω ,S(ω, ·)为l2ρ上的同胚, 而对任意给定u, ϕ ∈ l2ρ,

S(·, u)与S−1(·, ϕ)关于ω可测. 由文[19]可得如下结果.

引理3.2 假设(A1)-(A6)成立, 则对任意给定τ ∈ R, ω ∈ Ω , uτ ∈ l2ρ,系统(2)存在唯一解

u(t, τ, ω, uτ ) = S−1(θtω, ϕ(t, τ, ω,S(ω, uτ ))) = s−1(θtω)ϕ(t, τ, ω, s(ω)uτ ) ∈ l2ρ, t > τ, τ ∈ R,

这里u(τ, τ, ω, uτ ) = uτ , 且u(t, τ, ω, uτ )关于uτ连续, 关于ω可测. 解映射族

Φ(t, τ, ω) : uτ → u(t + τ, τ, θ−τω, uτ ), l2ρ → l2ρ, t ≥ 0, τ ∈ R, ω ∈ Ω

确定了由R和(Ω ,F ,P, {θt}t∈R)驱动的取值于l2ρ的连续余圈Φ = {Φ(t, τ, ω)}t≥0,τ∈R,ω∈Ω , 并且有

Φ(t, τ, ω)uτ = S−1(θtω,Φ(t, τ, ω)S(ω, uτ )),

即Φ与Φ是l2ρ上互为共轭的连续余圈.

由此可知, 如果Φ有随机吸引子K = K(τ, ω)τ∈R,ω∈Ω , 则K̃ = {S−1(ω,K(τ, ω))}τ∈R,ω∈Ω

是Φ的随机吸引子. 为此只需要证明Φ在l2ρ中的随机吸引子K的存在性.

3.4 吸收集

引理3.3 假设(A1)-(A6)成立, 则{Φ(t, τ, ω)}t≥0, τ∈R, ω∈Ω在l2ρ存在与τ ∈ R无关的有界的

缓增闭随机吸收集

K0 = {K0(τ, ω) : K0(τ, ω) = K0(ω) = {ϕ ∈ l2ρ : ‖ϕ‖ρ ≤ R1(ω)}, τ ∈ R, ω ∈ Ω}, (11)

其中

R2
1(ω) =

4
λ
‖g‖2ρ

∫ 0

−∞
e
∫ 0
r
(−λ

2 +2|a||z(θsω)|)ds−2az(θrω)dr. (12)

即K0(ω)满足: 对任意缓增随机集K(τ, ω) ∈ D(l2ρ), τ ∈ R, 存在TK(τ, ω) ≥ 0, 当t ≥ TK(τ, ω),
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ω ∈ Ω时, 有Φ(t, τ − t, θ−τω, K(τ − t, θ−tω)) ⊆ K0(ω).

证 设ϕ(r) = ϕ(r, τ − t, θ−τω, ϕτ−t(θ−τω))(τ ∈ R, t ≥ 0, r ≥ τ − t)为(5)的解, 初

值ϕτ−t(θ−τω) ∈ K(τ − t, θ−tω). 由(8)可得
d
dt
‖ϕ(r)‖2ρ +

λ

2
‖ϕ(r)‖2ρ ≤ (−λ

2
+ 2|a||z(θr−τω)|)‖ϕ(r)‖2ρ +

2
λ
‖g‖2ρe−2az(θr−τ ω), r ≥ τ − t. (13)

对(13)在[τ − t, τ ]上用Gronwall不等式得: ∀t ∈ R+, τ ∈ R, ω ∈ Ω ,

‖ϕ(τ, τ − t, θ−τω, ϕτ−t(θ−τω))‖2ρ +
λ

2

∫ τ

τ−t

e
∫ τ
r

(−λ
2 +2|a||z(θs−τ ω)|)ds‖ϕ(r, τ − t, θ−τω, ϕτ−t(θ−τω))‖2ρdr ≤

e
∫ τ
τ−t

(−λ
2 +2|a||z(θs−τ ω)|)ds‖ϕτ−t(θ−τω)‖2ρ +

2
λ
‖g‖2ρ

∫ τ

τ−t

e
∫ τ
r

(−λ
2 +2|a||z(θs−τ ω)|)ds−2az(θr−τ ω)dr ≤

e
∫ 0
−t

(−λ
2 +2|a||z(θsω)|)ds‖ϕτ−t(θ−τω)‖2ρ +

2
λ
‖g‖2ρ

∫ 0

−∞
e
∫ r
0 ( λ

2−2|a||z(θsω)|)ds−2az(θrω)dr. (14)

令

R1(ω) =
(

4
λ
‖g‖2ρ

∫ 0

−∞
e
∫ r
0(

λ
2−2|a||z(θsω)|)ds−2az(θrω)dr

)1/2

. (15)

则由(A6), (4)可知, R1(ω) < ∞且R1(ω)是缓增的. 由ϕτ−t(θ−τω) ∈ K(τ − t, θ−tω)可得

lim
t→+∞

e
∫ 0
−t

(−λ
2 +2|a||z(θsω)|)ds‖ϕτ−t(θ−τω)‖2ρ = 0.

3.5 随机吸引子

为了得到随机吸引子的存在性, 下面给出(5)的解的尾估计与Φ在K0上的渐近零性.

引理3.4 假设(A1)-(A6)成立, 则对任意τ ∈ R, ω ∈ Ω , 系统(5)的解ϕ(r) = (ϕk(r))k∈Z =

(ϕk(r, τ, ω, ϕτ (ω)))k∈Z(r ≥ τ)满足

(i) 对任意I ∈ N, t ≥ 0, 有∑

k∈Z

ρkγ(
|k|
I

)|ϕk(τ, τ − t, θ−τω, ϕτ−t(θ−τω))|2 ≤

(1 +
2b6

Iλ
)e−

∫ 0
−t

( λ
2−2|a||z(θsω)|)ds‖ϕτ−t(θ−τω)‖2ρ + (

b7

I
+ %I)P1(ω), (16)

其中

b6 = γ0m0a0b
2
3(a

2
0 + 1)(2m0 + 1)2, b7 =

4b6

λ2 ‖g‖2ρ, %I =
2
λ

sup
s∈R

∑

|k|≥I

ρk|gk(s)|2,

P1(ω) =
∫ 0

−∞
e
∫ r
0 ( λ

2−2|a||z(θsω)|)ds−2az(θrω)dr.

(ii) 对任意ν > 0及初值ϕτ−t ∈ K0(τ − t, θ−tω), 存在Tν(ω), 使得当t ≥ Tν(ω)时, 有∑

k∈Z

ρkγ(
|k|
I

)|ϕk(τ, τ − t, θ−τω, ϕτ−t(θ−τω))|2 ≤ ν + (
b7

I
+ %I)P1(ω).



464 高校应用数学学报 第40卷第4期

并且对任意ε > 0, 存在T(ω, ε) > 0, I(τ, ω, ε) ∈ N, 使得对t ≥ T(ω, ε), 有∑

|k|>I(τ,ω,ε)

ρk|ϕk(τ, τ − t, θ−τω, ϕτ−t(θ−τω))|2 ≤ ε, ∀t ≥ T(τ, ω, ε). (17)

证 构造一个递增的光滑函数γ ∈ C1(R+, [0, 1]), 满足



γ(s) = 0, 0 ≤ s ≤ 1;

0 ≤ γ(s) ≤ 1, 1 ≤ s ≤ 2;

γ(s) = 1, 2 ≤ s < +∞;

|γ′(s)| ≤ γ0, ∀s ∈ R+, γ0 > 0.

(18)

令I是正整数, 设w(t) = (γ( |k|I )ϕk(t))k∈Z ∈ l2ρ, 做内积((5), w)ρ并取实部得

(ϕ̇, w)ρ = 2Re(iAϕ,w)ρ − 2(λϕ,w)ρ − 2Re(ig(t)e−(a+bi)z(θtω), w)ρ + 2az(θtω)(ϕ,w)ρ, (19)

其中

(Aϕ,w)ρ =
∑

k∈Z

γ(
|k|
I

)ρk|(Eϕ)k|2 +
∑

k∈Z

(Eϕ)k

[
(E(ρw))k − γ(

|k|
I

)ρk(Eϕ)k

]
,

∣∣∣∣∣
∑

k∈Z

(Eϕ)k

[
(E(ρw))k − γ(

|k|
I

)ρk(Eϕ)k

]∣∣∣∣∣ ≤
∣∣∣∣∣
∑

k∈Z

(Eϕ)k

[
m0∑

l=−m0

dlρk+lγ(
|k + l|

I
)ϕk+l − γ(

|k|
I

)
m0∑

l=−m0

dlρk+lϕk+l

]∣∣∣∣∣ +

∣∣∣∣∣
∑

k∈Z

(Eϕ)k

[
γ(
|k|
I

)
m0∑

l=−m0

dlρk+lϕk+l − ρkγ(
|k|
I

)
m0∑

l=−m0

dlϕk+l

]∣∣∣∣∣ ≤

b6

2I
‖ϕ‖2ρ +

b4

2

∑

k∈Z

ρkγ(
|k|
I

)|ϕk(t)|2,

2Re(iAϕ,w)ρ = −2Im(Aϕ,w)ρ ≤ b6

I
‖ϕ‖2ρ +

λ

2

∑

k∈Z

ρkγ(
|k|
I

)|ϕk(t)|2,

−2λ(ϕ,w)ρ ≤ −2λ
∑

k∈Z

ρkγ(
|k|
I

)|ϕk(t)|2,

−2Re(ig(t)e−(a+bi)z(θtω), w)ρ ≤ 2
λ

e−2az(θtω)
∑

k∈Z

ρkγ(
|k|
I

)|gk(t)|2 +
λ

2

∑

k∈Z

ρkγ(
|k|
I

)|ϕk(t)|2.

由(19)可得
d
dt

∑

k∈Z

ρkγ(
|k|
I

)|ϕk(t)|2 + (
λ

2
− 2|az(θtω)|)

∑

k∈Z

ρkγ(
|k|
I

)|ϕk(t)|2 ≤

2
λ

e−2az(θtω)
∑

k∈Z

ρkγ(
|k|
I

)|gk|2 +
b6

I
‖ϕ‖2ρ, t ≥ τ, τ ∈ R. (20)

(i) 对(20)在[τ − t, τ ](t ≥ 0)上应用Gronwall不等式, 由(11), (14), (A4)和(A6)可得∑

k∈Z

ρkγ(
|k|
I

)|ϕk(τ, τ − t, θ−τω, ϕτ−t(θ−τω))|2 ≤ e−
∫ 0
−t

( λ
2−2|a||z(θsω)|)ds‖ϕτ−t(θ−τω)‖2ρ +

2
λ

∫ 0

−∞
e
∫ r
0(

λ
2−2|a||z(θsω)|)ds−2az(θrω)

∑

k∈Z

ρkγ(
|k|
I

)|gk(r + τ)|2dr +

b6

I

∫ τ

τ−t

e
∫ r
τ
( λ

2−2|a||z(θsω)|)ds‖ϕ(r, τ − t, θ−τω, ϕτ−t(θ−τω))‖2ρdr ≤
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(1 +
2b6

Iλ
)e−

∫ 0
−t

( λ
2−2|a||z(θsω)|)ds‖ϕτ−t(θ−τω)‖2ρ + (

b7

I
+ %I)P1(ω). (21)

(ii) 由(21), 对ϕτ−t ∈ K0(τ − t, θ−tω)及t ≥ 0, 有∑

k∈Z

ρkγ(
|k|
I

)|ϕk(τ, τ − t, θ−τω, ϕτ−t(θ−τω))|2 ≤
(

1 +
2b6

λ

)
e−

∫ 0
−t

( λ
2−2|a||z(θsω)|)dsR2

1(θ−tω) + (
b7

I
+ %I)P1(ω). (22)

由(A5)与 lim
t→+∞

(
1 + 2b6

λ

)
e−

∫ 0
−t

( λ
2−2|a||z(θsω)|)dsR2

1(θ−tω) = 0知, (ii)成立.

结合引理3.1-引理3.4及[20]中定理2.4可得Φ的随机吸引子的存在性.

定理3.5 假设(A1)-(A6)成立, 则Φ = {Φ(t, τ, ω)}t≥0,τ∈R,ω∈Ω存在D(l2ρ)-拉回随机吸引

子K = {K(τ, ω)}τ∈R, ω∈Ω满足: 对任意τ ∈ R, ω ∈ Ω , 有

K(τ, ω) =
⋂

s≥TK0 (τ,ω)

⋃

t≥s

Φ(t, τ − t, θ−tω)K0(θ−tω).

§4 Schrödinger格点系统在加权空间中的随机指数吸引子

假设条件(A1)-(A6)成立. 定理3.5表明连续余圈Φ存在随机吸引子K = {K(τ, ω)}τ∈R,ω∈Ω ,

但不能断定其中的子集K(τ, ω)的维数是有限的. 根据随机指数吸引子的定义, 如其存在, 则可

得到随机吸引子中的子集是有限维的. 为此本节将用[21]中的定理2.1考虑Schrödinger格点系

统(5)的解确定的连续余圈Φ在加权空间l2ρ中的随机指数吸引子的存在性.

取ν = ν0 > 0充分小, 使得
4
√

π + 3e
3
√

π
(
2ν0f0

ρ
+

22p+3νp+1
0 f0

ρp+1
) ≤ λ

32
. (23)

由引理3.3知, 对任意ω ∈ Ω , 存在tK0(ω) ≥ 0,使得对任意τ ∈ R, 当t ≥ tK0(ω)有Φ(t, τ −
t, θ−τω, K(θ−tω)) ⊆ K0(ω). 则可得到如下引理.

引理4.1 假设条件(A1)-(A6)成立. 设系统(5)的解为

ϕ(r) = (ϕk(r))k∈Z = (ϕk(r, τ, ω, ϕτ (ω)))k∈Z, r ≥ τ.

对任意τ ∈ R, ω ∈ Ω , s > 0, 令

η(τ − s, θ−sω) =
⋃

t≥max{tK0 (ω),Tν0 (ω),tK0 (θ−sω),Tν0 (θ−sω)}
ϕ(τ, τ − t− s, θ−t−sω)K0(θ−t−sω) ⊆

K0(θ−sω).

则对任意τ ∈ R, ω ∈ Ω , 有

(i) 有界性: supτ∈R supm,n∈η(τ,ω) ‖m− n‖ρ ≤ 2R1(ω) < +∞, 且R1(θtω)关于t连续;

(ii) 正不变性: Φ(t, τ − t, θ−tω)η(τ − t, θ−tω) ⊆ η(τ, ω), ∀t ≥ 0;

(iii) 拉回吸收性: 对任意K = {K(τ, ω)}τ∈R,ω∈Ω ∈ D, 存在TK(τ, ω) ≥ 0, 使得

Φ(t, τ − t, θ−tω)K(τ − t, θ−tω) ⊆ η(τ, ω),∀t ≥ TK(τ, ω);

(iv) 对任意ϕ ∈ η(τ, ω), I ∈ N, 有Σk∈Zρkγ( |k|I )|ϕk|2 ≤ ν0 + ( b7
I + %I)P1(ω).

由此可知, Φ满足[21]中定理2.1的条件(H1). 下面验证Φ满足[21]中定理2.1的条件(H2).

引理4.2 假设条件(A1)-(A6)成立,则∀τ ∈ R, ω ∈ Ω , t ≥ 0, ϕs,τ−t(θ−τω) ∈ η(τ − t, θ−tω),
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其中s = 1, 2, 存在一个随机变量B0(ω) > 0,使得(5)的解满足

‖ϕ(τ, τ − t, θ−τω, ϕ1,τ−t(θ−τω))− ϕ(τ, τ − t, θ−τω, ϕ2,τ−t(θ−τω))‖ρ ≤
e
∫ 0
−t

B0(θsω)ds‖ϕ1,τ−t(θ−τω)− ϕ2,τ−t(θ−τω)‖ρ, (24)

其中

B0(ω) = (−3
4
λ+L̂(ω)+|a||z(ω)|), L̂(ω) =

f0

ρ

(
3 +

(1 + 2p+2)
ρp

R2p
1 (ω)e2p|a||z(ω)|

)
R2

1(ω)e2az(ω).

证 对任意τ ∈ R, ω ∈ Ω , t ≥ 0, ϕs,τ−t(θ−τω) ∈ η(τ − t, θ−tω) ⊆ K0(θ−tω), 其中s = 1, 2,

令

ϕ(s)(r) = ϕ(r, τ − t, θ−τω, ϕs,τ−t(θ−τω)), y(r) = ϕ(1)(r)− ϕ(2)(r), r ≥ τ − t.

则y(r)满足

ẏ = iAy − λy + i(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(2)|2e2az(θr−τ ω))ϕ(2)) + (25)

(a + bi)z(θr−τω)y, y(τ, ω) = ϕ1,τ (ω)− ϕ2,τ (ω), t ≥ 0, r > τ − t.

用(25)与y(r)做内积, 取实部得
d
dt
‖y‖2ρ = 2Re(iAy, y)ρ − 2λ‖y‖2ρ + 2az(θr−τω)‖y‖2ρ +

2Re(i(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(2)|2e2az(θr−τ ω))ϕ(2)), y)ρ,

其中

2Re(iAy, y)ρ ≤ λ

2
‖y‖2ρ,

Re(i(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(2)|2e2az(θr−τ ω))ϕ(2)), y)ρ ≤
f0

ρ

(
1 +

1
ρp

R2p
1 (θr−τω)e2paz(θr−τ ω)

)
R2

1(θr−τω)e2az(θr−τ ω)‖y‖2ρ +

2f0

ρ

(
1 +

2p+1

ρp
R2p

1 (θr−τω)e2paz(θr−τ ω)

)
R2

1(θr−τω)e2az(θr−τ ω)‖y‖2ρ = L̂(θr−τω)‖ϕ(1) − ϕ(2)‖2ρ.
所以
d
dt
‖y(r)‖2ρ ≤

(
−3

2
λ + 2L̂(θr−τω) + 2|a||z(θr−τω)|

)
‖y(r)‖2ρ = 2B0(θr−τω)‖y(r)‖2ρ, r > τ − t.

对上式在[τ − t, r]上用Gronwall不等式, 得

‖y(r)‖2ρ ≤ e2
∫ r
τ−t

B0(θs−τ ω)ds‖y(τ − t)‖2ρ. (26)

当取r = τ时即得(24).

引理4.3 假设条件(A1)-(A6)成立, 则对任意τ ∈ R, ω ∈ Ω , t ≥ 0, I ∈ N, 存在随机变

量B1(ω), B2(ω) > 0, 使得对任意ϕs,τ−t(θ−τω) ∈ η(τ − t, θ−tω), 其中s = 1, 2,有∑

|k|>2I

ρk

∣∣ϕk(τ, τ − t, θ−τω, ϕ1,τ−t(θ−τω))− ϕk(τ, τ − t, θ−τω, ϕ2,τ−t(θ−τω))
∣∣2 ≤

(e
∫ 0
−t

(− 3
4 λ+B1(θsω))ds +

δI

2
e
∫ 0
−t

B2(θsω)ds)2‖ϕ1,τ−t(θ−τω)− ϕ2,τ−t(θ−τω)‖2ρ, (27)

其中
δ2
I

4
=

1√
3λ

(
1
I

+%I +
1

Ip+1
+%p+1

I ), B1(ω) = |az(ω)|+ 2ν0

ρ
f0e2az(ω) +

22p+3

ρp+1
νp+1
0 f0e2(p+1)az(ω),

B2(ω) = B0(ω) + B1(ω) + b2
10(1 + e4(p+1)az(ω)P

2(p+1)
1 (ω)).

证 令w̃ = (w̃k)k∈Z = (γ( |k|I )yk)k∈Z, 用其与(25)做内积, 取实部得

(ẏ, w̃)ρ = Re(iAy, w̃)ρ − (λy, w̃)ρ + az(θr−τω)(y, w̃)ρ+
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Re(i(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(2)|2e2az(θr−τ ω))ϕ(2)), w̃)ρ,

其中

Re(iAy, w̃)ρ ≤ b6

2I
‖y‖2ρ +

λ

4

∑

k∈Z

ρkγ(
|k|
I

)|yk(r)|2. (28)

由(A3)得

Re(i(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(2)|2e2az(θr−τ ω))ϕ(2)), w̃)ρ ≤
(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(1)|2e2az(θr−τ ω))ϕ(2), w̃)ρ +

(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(2) − f(|ϕ(2)|2e2az(θr−τ ω))ϕ(2), w̃)ρ ≤
Σk∈Zρkγ(

|k|
I

)f0

(
1 + |ϕ(1)

k |2pe2paz(θr−τ ω)
)
|ϕ(1)

k |2e2az(θr−τ ω)|yk(r)|2 +

Σk∈Zρkγ(
|k|
I

)f0

(
1 + (|ϕ(1)

k |2 + |ϕ(2)
k |2)pe2paz(θr−τ ω)

)
×

(
|ϕ(1)

k ||ϕ(2)
k |+ |ϕ(2)

k |2
)

e2az(θr−τ ω)|yk(r)|2 ≤

2f0e2az(θr−τ ω)
∑

k∈Z

ρkγ(
|k|
I

)
(
|ϕ(1)

k |2 + |ϕ(2)
k |2

)
|yk(r)|2 +

2p+2f0e2(p+1)az(θr−τ ω)
∑

k∈Z

ρkγ(
|k|
I

)
(
|ϕ(1)

k |2(p+1) + |ϕ(2)
k |2(p+1)

)
|yk(r)|2. (29)

由引理4.1可知 ∑

|k|>2I

(|ϕ(1)
k (r)|2 + |ϕ(2)

k (r)|2) ≤ 2
ρ
ν0 +

2
ρ
(
b7

I
+ %I)P1(θr−τω), (30)

∑

|k|>2I

(|ϕ(1)
k (r)|2(p+1) + |ϕ(2)

k (r)|2(p+1)) ≤ 2p+2

ρp+1
νp+1
0 +

2p+2

ρp+1
(
b7

I
+ %I)p+1P p+1

1 (θr−τω). (31)

因此, 当|k| > 2I, I ∈ N时有

Re(i(f(|ϕ(1)|2e2az(θr−τ ω))ϕ(1) − f(|ϕ(2)|2e2az(θtω))ϕ(2)), w̃)ρ ≤
2f0e2az(θr−τ ω)

∑

k∈Z

ρkγ(
|k|
I

)(
2ν

ρ
+

2
ρ
(
b7

I
+ %I)P1(θr−τω))|yk(r)|2 +

2p+2f0e2(p+1)az(θr−τ ω)
∑

k∈Z

ρkγ(
|k|
I

)(
2p+2

ρp+1
νp+1 +

2p+2

ρp+1
(
b7

I
+ %I)p+1P p+1

1 (θr−τω))|yk(r)|2 ≤
(

4ν

ρ
f0e2az(θr−τ ω) +

22p+4

ρp+1
νp+1f0e2(p+1)az(θr−τ ω)

) ∑

k∈Z

ρkγ(
|k|
I

)|yk(r)|2 +

4
ρ
f0e2az(θtω)(

b7

I
+%I)P1(θr−τω)

∑

k∈Z

ρkγ(
|k|
I

)|yk(r)|2 +

23p+5

ρp+1
f0e2(p+1)az(θr−τ ω)(

bp+1
7

Ip+1
+%p+1

I )P p+1
1 (θr−τω)

∑

k∈Z

ρkγ(
|k|
I

)|yk(r)|2. (32)

由此可得
d
dt

∑

k∈Z

ρkγ

( |k|
I

)
|yk(r)|2 +

(
3
2
λ− 2B1(θr−τω)

) ∑

k∈Z

ρkγ

( |k|
I

)
|yk(r)|2 ≤

(
b6

I
+

4
ρ
f0e2az(θr−τ ω)(

b7

I
+ %I)P1(θr−τω)

)
‖y(r)‖2ρ+
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23p+5

ρp+1
f0e2(p+1)az(θr−τ ω)(

bp+1
7

Ip+1
+%p+1

I )P p+1
1 (θr−τω)‖y(r)‖2ρ ≤

b8(
1
I

+ %I)(1 + e2az(θr−τ ω)P1(θr−τω))e2
∫ r
τ−t

B0(θs−τ ω)ds‖y(τ − t)‖2ρ+

b9(
1

Ip+1
+ %p+1

I )e2(p+1)az(θr−τ ω)P p+1
1 (θr−τω)e2

∫ r
τ−t

B0(θs−τ ω)ds‖y(τ − t)‖2ρ ≤

b10(
1
I

+ %I +
1

Ip+1
+ %p+1

I )(1 + e2(p+1)az(θr−τ ω)P p+1
1 (θr−τω))e2

∫ r
τ−t

B0(θs−τ ω)ds‖y(τ − t)‖2ρ,
(33)

其中b8 = max{(b6+ 4f0
ρ )b7,

4f0
ρ }, b9 = max{ 23p+5

ρp+1 f0,
23p+5

ρp+1 f0b
p+1
7 }, b10 = max{b8, b9,

2p+1
p , p+2

p+1}.
对(33)在[τ − t, r]上用Gronwall不等式, 则当|k| ≥ 2I时, 有∑

k∈Z

ρkγ(
|k|
I

)
∣∣yk(τ, τ − t, θ−τω, yτ−t(θ−τω))

∣∣2 ≤ e
∫ 0
−t

(− 3
2 λ+2B1(θsω))ds‖y(τ − t)‖2ρ +

(
1
I

+ %I +
1

Ip+1
+ %p+1

I )‖y(τ − t)‖2ρe
∫ 0
−t

(2B0(θsω)+2B1(θsω))ds ×
∫ 0

−t

b10

(
1 + e2(p+1)az(θrω)P p+1

1 (θrω)
)

e
3
2 λrdr, (34)

其中∫ 0

−t

b10

(
1 + e2(p+1)az(θrω)P p+1

1 (θrω)
)

e
3
2 λrdr ≤ 1√

3λ
e
∫ 0
−t

2b210(1+e4(p+1)az(θrω)P
2(p+1)
1 (θrω))dr. (35)

所以, 当|k| ≥ 2I时有∑

|k|≥2I

ρk|yk(τ, τ − t, θ−τω, yτ−t(θ−τω))|2 ≤
∑

k∈Z

ρkγ(
|k|
I

)|yk(τ, τ − t, θ−τω, yτ−t(θ−τω))|2 ≤

(e
∫ 0
−t

(− 3
2 λ+2B1(θsω))ds +

δ2
I

4
e
∫ 0
−t

2B2(θsω)ds)‖y(τ − t)‖2ρ, (36)

即(27)成立.

引理4.4 假设条件(A1)-(A5)成立, 取|a|充分小使得
|a| ≤ min

{
λ
√

π

32
,

1
32p + 32

}
, (37)

那么, 0 ≤ E[B1(ω)] ≤ λ
16 , 0 ≤ E[B2

2(ω)] < +∞.

证 显然(37)蕴含(A6)成立. 由(4), (23)与(37)得

E[B1(ω)] = |a|E[z(ω)] +
2ν0f0

ρ
E[e2|az(ω)|] +

22p+3νp+1
0 f0

ρp+1
E[e2(p+1)|az(ω)|] ≤

|a|√
π

+
4
√

π + 3e
3
√

π

(
2ν0f0

ρ
+

22p+3νp+1
0 f0

ρp+1

)
≤ λ

16
. (38)

B2
2(ω) ≤ 3

[
B2

0(ω) + B2
1(ω) + 4b4

10(ε) + 2b4
10(ε)

(
e16(p+1)az(ω) + P

8(p+1)
1 (ω)

)]
≤

b11

(
1 + a2|z(ω)|2 + P 2

2 (ω) + e16(p+1)|az(ω)| + P
8(p+1)
1 (ω)

)
, (39)

其中

P2(ω) =
2ν0f0

ρ
e2az(ω) +

22p+3νp+1
0 f0

ρp+1
e2(p+1)az(ω).

E[P 8p+8
1 (ω)] ≤ E[

(∫ 0

−∞
e−

∫ 0
r
( λ

2−2az(θsω)ds−2az(θrω))dr

)8p+8

] ≤
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E[
(∫ 0

−∞
e

4p+4
8p+7 λrdr

)8p+7 ∫ 0

−∞
e4λ+16|a| ∫ 0

r
|z(θsω)|ds+16|a||z(θrω)|dr] ≤

(
8p + 7

(4p + 4)λ

)8p+7

·
∫ 0

−∞
e4λr

(
e−32|a|r +

4
√

π + 3e
3
√

π

)
dr = b12 < ∞, (40)

则

E[B2
2(ω)] ≤ b11

(
1 +

a2

2
√

π
+ b13 +

4
√

π + 3e
3
√

π
+ b12

)
< +∞. (41)

定理4.5 假设条件(A1)-(A5)及(37)成立, 则连续余圈Φ = {Φ(t, τ, ω)}t≥0, τ∈R, ω∈Ω有一个

随机指数吸引子H = {H(τ, ω)}τ∈R,ω∈Ω , 满足: 对任意τ ∈ R, ω ∈ Ω , t ≥ 0,

(1) H(τ, ω)(⊆ η(τ, ω))是l2ρ中的紧集, 关于ω可测;

(2) Φ(t, τ, ω)H(τ, ω) ⊆ H(t + τ, θtω);

(3) 存在I ∈ N, 使得分形维数dimfH(τ, ω) ≤ 2(4I+2) ln(
2
√

4I+2
δ +1)

ln 4
3

< ∞;

(4) 对D(l2ρ)中的任意集合K, 存在随机变量tK(τ, ω) ≥ 0和缓增随机变量ξK,ω > 0使得

dh(Φ(t, τ, ω)K(τ, ω),H(t + τ, θtω)) ≤ ξK,ωe−
λ ln 4

3
64 ln 2 t, t ≥ tK(τ, ω).

证 在(24), (27)中取t = t1 = 16 ln 2
λ . 由引理4.4知

0 < ν̃ = t21

(
2E[B2

2(ω)] +
λ

2
E[B2(ω)]

)
< ∞.

由δ2
I的表达式知, 存在充分大的正整数I ∈ N, 使得

0 ≤ δ2
I

=
4√
3λ

(
1
I

+
1

I
p+1 + %1,I + %p+1

1,I

)
≤ min{ 1

16
, e
− 2

ln 3
2

ν̃}. (42)

则由引理4.1-4.4和[21]中定理2.1可知, 连续余圈Φ存在随机指数吸引子H = {H(τ, ω)}τ∈R,ω∈Ω满

足定理4.5的性质(1)-(4).

附注4.1 在定理4.5的条件下, 带可乘白噪声的非自治Schrödinger格点系统(1)存在随机指

数吸引子, 这表明此时系统(1)的解的极限行为可以用有限个参数来描述, 即原来无穷维的系统

最终可退化为有限维系统. 注意到条件(37)需要随机项系数中的|a|充分小, 而对b的取值无限制,

这是因为(1)中起作用的项是虚数“i”项.
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Random attractor and random exponential attractor for Schrödinger
lattice system in weighted spaces
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Abstract: It mainly study the existence of random attractors and random exponential attractors

for a non-autonomous schrödinger lattice system with multiplicative white noise and weak damping in

weighted spaces of infinite sequences (the weights of components of elements are not exactly the same

in their norm). It is shown that under certain conditions, the limit behavior of the solutions of the

original infinite dimensional system can be described by a finite number of parameters, that is, the

original infinite dimensional system can be reduced into a finite dimensional system.

Keywords: Schrödinger lattice system; weighted space of infinite sequences; random attractor;

random exponential attractor
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