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具有非局部扩散的霍乱模型的动力学分析
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摘 要: 文中建立了一类具有非局部扩散的霍乱传染病模型, 证明了模型正解的全局
存在性和全局吸引子的存在性. 通过定义基本再生数, 得到系统平衡态的全局性质, 即
当基本再生数小于1时, 系统的无病平衡态是全局吸引的; 当基本再生数大于1时, 系统
是一致持久的. 此外, 在一定条件下, 系统存在全局吸引的地方病平衡态. 表明基本再
生数是控制疾病生存和消亡的重要阈值.
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§1 引 言

霍乱是一种由霍乱弧菌引起的急性水传播传染病. 据估计, 全球每年大约有130万至400万
人感染霍乱, 并且其中有2.1万至14.3万人因为霍乱而死亡, 该传染病目前仍影响着全球至少47个
国家和地区[1]. 近年来, 霍乱疫情主要集中在医疗卫生水平低、缺乏安全卫生饮用水源的发展中
国家. 例如, 2010年海地爆发霍乱, 导致大约665000例确诊病例和8183人死亡病例[2], 而此次爆
发的原因之一是当地水源Artibonite河的传播. 由于全球经济发展和贫困的减少, 霍乱的发病率
在未来将下降, 但由于极端天气引起的气候变化和海洋变化, 霍乱的发病率可能在未来几十年内
增加[3]. 因此, 研究霍乱的传播机制和发展趋势具有重要的理论和现实意义.

近年来, 数学模型已成为研究传染病传播规律以及分析传染病控制策略最有力工具之一[4].
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2009年Tien和Eran建立了一个多传播途径的水媒传染病模型[5]



dS(t)
dt

= µ− β1S(t)I(t)− β2S(t)W (t)− µS(t),

dI(t)
dt

= β1S(t)I(t) + β2S(t)W (t)− (µ + γ)I(t),

dW (t)
dt

= kI(t)− δI(t),

其中S(t)、I(t)和W (t)分别表示时刻t的易感者、染病者和水源中病原体的密度. 该模型中易感
者不仅被染病者所感染, 还可以因从环境中间接摄入病原体而感染. µ表示系统的更新率以及

人群的自然死亡率; β1和β2分别为易感者接触染病者和环境中的病原体被感染的概率; γ表示染

病者的恢复率; k和δ 分别表示病原体从染病者体内的脱落率和病原体的死亡率. 通过构造合适
的Lyapunov函数, Tien等[5]得到系统平衡态的全局渐近稳定性. 如果将上述研究中的W (t)理解
成霍乱弧菌, 那么这个模型可以用来描述空间同质环境下的霍乱传染病.

越来越多的研究表明空间因素对霍乱的传播产生了显著的影响, 例如地理环境、社会经济
结构以及气象和气候变化等. 对具有空间因素的生物模型, 需要考虑个体或种群的空间位置. 传
染病动力学研究中通常应用反应扩散方程来描述个体具有空间扩散的效应. Zhou等[6]考虑了一

个具有一般反应项的反应扩散霍乱传染病模型, 并且分析了有界区域上系统正稳态的全局稳定
性以及无界区域上的行波解存在性问题. 值得注意的是, Zhou等[6]所考虑的是局部扩散模型, 但
是随着全球化的发展, 很多传染病可以实现远距离的传播. Kot等[7]指出非局部算子更适合用来

描述大范围的扩散, 而且在对比了局部扩散和非局部扩散在生物学上的应用后, Lee等[8]发现非

局部扩散模型更适用于生物学, 在描述生物系统上更有优势. 因此, 为了描述当前世界日新月异
的发展给霍乱传播带来的风险, 有必要研究非局部扩散的霍乱传染病模型.

§2 模型建立以及适定性分析
考虑非局部扩散以及一般发生率函数, 得到霍乱传染病模型




∂S(x, t)
∂t

= dS

∫

Ω

[J1(x− y)S(y, t)− S(x, t)]dy + Λ(x)− µ(x)S(x, t)−
f(S(x, t), I(x, t))− g(S(x, t),W (x, t)),

∂I(x, t)
∂t

= dI

∫

Ω

[J2(x− y)I(t, y)− I(x, t)]dy − (µ(x) + α(x))I(x, t)+

f(S(x, t), I(x, t)) + g(S(x, t),W (x, t)),
∂W (x, t)

∂t
= dW

∫

Ω

[J3(x− y)W (t, y)−W (x, t)]dy + k(x)I(x, t)− c(x)W (x, t),

(1)

具有初始条件

S(x, 0) = φS(x) > 0, I(x, 0) = φI(x) ≥ 0, W (x, 0) = φW (x) ≥ 0, x ∈ Ω ,

其中S(x, t)、I(x, t)和W (x, t)分别表示空间位置x和时刻t的易感者、染病者和环境中霍乱弧菌

的密度; µ(x)为人群的自然死亡率, α(x)为染病人群的移除率, k(x)为霍乱弧菌从染病人群中的
脱落率, c(x)为霍乱弧菌死亡率. 易感者被染病者和环境中霍乱弧菌成功感染的发生率分别用一
般的非线性函数f(S, I)和g(S,W )表示. 对于S > 0, I > 0以及W > 0, 函数f和g满足如下假设.

(A1) f(S, I) > 0以及g(S,W ) > 0. f(S, I) = 0当且仅当S = 0或I = 0, g(S,W ) = 0当且仅
当S = 0或W = 0.
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(A2)
∂f(S, I)

∂S
> 0,

∂f(S, I)
∂I

> 0,
∂2f(S, I)

∂I2
≤ 0. 函数g也具有相同的性质.

此外, 对模型(1)中的参数满足如下假设.

(A3) 扩散系数dS ≥ 0, dI ≥ 0以及dW > 0. 另外, 模型参数Λ(·), µ(·), α(·), k(·)和c(·)在Ω是严
格正的并且是Lipschitz连续.

满足上述假设的非线性函数的特例, 已在诸多文献中应用, 例如

(i) 双线性发生率f(S, I) = SI;

(ii) 饱和发生率f(S, I) =
SI

1 + αI
;

(iii) 标准发生率f(S, I) =
SI

S + I
.

不失一般性, 令h+ = maxx∈Ω h(x)以及h− = minx∈Ω h(x), 其中h(·)代表模型(1)各个参
数. 模型(1)中引入了非局部扩散, J ∗ φ(x) − φ(x) =

∫
Ω

J(x − y)φ(y)dy − φ(x), 生物意义
是

∫
Ω

J(x − y)φ(y)dy表示个体从空间中其他位置到达当前位置的概率, − ∫
Ω

J(y − x)φ(x)dy =
−φ(x)表示当前位置的个体到达空间中其他位置的概率. 模型(1)中核函数Ji (i = 1, 2, 3)满足如
下假设.

(A4) 对于x ∈ Ω , Ji(x) > 0, Ji(x) = Ji(−x), Ji是Lipschitz连续的并且
∫
Ω

Ji(x)dx = 1.

下面将对模型(1)进行适定性分析, 引入如下空间和记号. 令X = C(Ω ,R)以及Y = X3具有

范数‖φ‖X = maxx∈Ω |φ(x)|, ∀φ ∈ X以及‖ψ‖Y = maxx∈Ω

√
‖ψ1‖2X + ‖ψ2‖2X + ‖ψ3‖2X, ∀ψ ∈ Y.

进一步, 令X+ = C(Ω ,R+)以及Y+ = X3
+. 由[9]可知, (X,X+)和(Y,Y+)是强有序的Banach空

间. 定义X上的线性算子A[φ](x) := diag(ASφ1(x),AIφ2(x),AW φ3(x))为



ASφ(x) = dS

∫

Ω

[J1(x− y)φ(y)− φ(x)]dy − µ(x)φ(x),

AIφ(x) = dI

∫

Ω

[J2(x− y)φ(y)− φ(x)]dy − (µ(x) + α(x))φ(x),

AW φ(x) = dW

∫

Ω

[J3(x− y)φ(y)− φ(x)]dy − c(x)φ(x),

以及

F [φ](x) :=




Λ(x)− f(φS(x), φI(x))− g(φS(x), φW (x))
f(φS(x), φI(x)) + g(φS(x), φW (x))

k(x)φI(x)


 .

对于i = 1, 2, 3, 由文献[10]中的定理1.2可知算子Ai是连续的, 并且在X上生成一致连续半
群{Ti(t)}t≥0, 其中Ti = eAit. 现在将模型(1)转化为抽象Cauchy问题

du(t)
dt

= Au(t) + F [u](t), u(0) = u0,

其中u(·, t) = (S(·, t), I(·, t),W (·, t))T.

引引引理理理2.1 令φ0 = (φ1, φ2, φ3)T ∈ Y+, 则存在Tmax > 0, 使得当t ∈ [0, Tmax)时, 系统(1)存
在唯一解(S(x, t), I(x, t),W (x, t)).
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证证证 由于A是一致连续半群{T (t)}t≥0的无穷小生成元, 则系统(1)的解可以写成

u(x, t) = T (t)φ0(x) +
∫ t

0

T (t− s)F(u(x, s))ds, ∀(x, t) ∈ Ω × [0,∞),

其中T [φ](x) = diag(Ti[φ](x))(i = 1, 2, 3), 可知F在Y上是Fréchet可导的. 再结合文献[11]的推
论4.16, 此引理得证.

引引引理理理2.2 如果u = (S, I,W )T是系统(1)具有初值条件φ0 ∈ Y+的解, 那么对于任意
的(x, t) ∈ Ω × [0, t0), 有u(·, t) ∈ Y+.

证证证 首先证明S的正性. 应用反证法, 假设存在t0 > 0, 使得对于任意的t ∈ (0, t0),
有S(·, t) > 0以及S(·, t0) = 0. 由系统(1)解的连续性, 以及φ1的正性, 可以得到∂S(·,t)

∂t

∣∣
t=t0

≤ 0.

另一方面, 由系统(1)的第一个方程, 有∂S(x,t)
∂t

∣∣
t=t0

= Λ(x) > 0, x ∈ Ω̄ , 此处得到一个矛盾. 因
此, 对于任意的(x, t) ∈ [0, Tmax)× Ω̄ , 都有S(x, t) > 0.

下面关注I和W的正性. 令t1 = min{tI , tW }, 其中tI := inf{t ∈ [0, Tmax)|I(·, t) = 0}以
及tW := inf{t ∈ [0, Tmax)|W (·, t) = 0}. 如果tI < tW , 那么t1 = tI . 通过系统(1)初始条
件的正性和解的连续性知, 存在φ0 ∈ Y+使得I(·, t1) = 0, W (·, t1) > 0, I ′(·, t1) < 0, 并且
对于任意的t ∈ [0, t1), 都有I(·, t) > 0. 应用系统(1)的第二个方程, 可以得到∂I(x,t)

∂t

∣∣
t=t1

=
g(S(·, t1),W (·, t1)) > 0, 得到矛盾. 另一方面, 如果tI ≥ tW , 可知t1 = tW . 则对于任意
的t ∈ [0, t1], 有W (·, t1) = 0, I(·, t1) > 0以及W ′(·, t1) < 0. 应用系统(1)的最后一个方程, 可
得∂W (x,t)

∂t

∣∣
t=t1

= k(·)I(·, t1) > 0, 得到矛盾. 因此, 对于任意的(x, t) ∈ [0, Tmax) × Ω̄和φ0 ∈ Y+,
都有u(x, t) > 0.

下一步将上述局部解延拓到全局解, 从而有下面的定理.

定定定理理理2.1 对于任意的φ0 ∈ Y+, 系统(1)在[0,∞)上存在唯一的解u(x, t;φ). 进一步地, 系统
的解映射生成一个解半流Φt : Y+ → Y+满足Φ[φ](t) = (S(·, t), I(·, t),W (·, t)).

证证证 考虑问题
∂S̃(x, t)

∂t
= A1S̃(x, t) + Λ(x), x ∈ Ω̄ , t > 0. (2)

容易得到, 系统(2)的解是系统(1)的第一个方程的上解. 应用文献[12]的引理2.1, 可知如果初值满
足φ1(x) < S0(x), 对于任意的t ≥ 0以及x ∈ Ω̄ , 方程(2)有唯一的正平衡态S0(x) = (−A−1

1 )Λ(x).
令N(x, t) = S(x, t) + I(x, t), 由系统(1)的前两个方程, 可得

d
dt

∫

Ω

N(x, t)dx ≤ Λ+|Ω | − µ−
∫

Ω

(S(x, t) + I(x, t))dx.

应用比较原理, 可以得到对于任意的x ∈ Ω̄有

sup
t∈[0,Tmax)

∫

Ω

N(x, t)dx ≤ (‖φ1‖∞ + ‖φ2‖∞)|Ω |+ Λ+|Ω |
µ−

:= C1.

进一步地, 则有
∂N(x, t)

∂t
≤ (dS + dI)C1 + Λ+ − (d− + µ−)N(x, t),

进而有

sup
t∈[0,Tmax)

N(x, t) ≤ ‖φ1‖∞ + ‖φ2‖∞ +
(dS + dI)C1 + λ+

d− + µ−
:= C2.

应用系统(1)的第三个方程, 易得

sup
t∈[0,Tmax)

W (x, t) ≤ ‖φ3‖∞ +
k+C2

c−
:= C3.

由上述的有界性可知此引理成立.
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注意到系统(1)是非紧的, 下面将应用Kuratowski测度的相关理论证明系统解半流是渐近光
滑的, 首先给出定义[13].

定定定义义义2.1 称连续映射f : X → X是κ-压缩的(即l阶κ-收缩, 0 ≤ l < 1), 如果f将有界集映射

到有界集, 并且对于任意的非空有界闭集B ⊂ X满足κ(B) > 0, 有κ(f(B)) < lκ(B) < κ(B), 其
中κ(B) := inf{r : B有限覆盖的直径小于r}表示Kuratowski测度.

引引引理理理2.3 对于任意的有界闭集B ⊂ Y+, 解半流Φt在Y+上是κ-压缩的, 即κ(Φ(t)B) ≤
e−νtκ(B), 其中ν = minx∈Ω{µ(x), c(x)}.

证证证 由定理2.1知系统(1)的解具有形式

Φ[u](t) = T (t)φ0(x) +
∫ t

0

T (t− s)F [u](s)ds, ∀t > 0, φ0 ∈ Y+.

下面将上述解半流分解成: Φ(t) = Φ̂(t) + Φ̃(t), 其中

Φ̂[u](t) = T (t)φ0(x), Φ̃[u](t) =
∫ t

0

T (t− s)F [u](s)ds, ∀t > 0.

应用文献[14]中的定理5可知Φ̃[u](t)是等度连续的. 对于t ≥ 0和u ∈ B, 进而应用Arzelà-Ascoli定
理可以得到Φ̃[u](t)是预紧的. 另一方面, ∀t > 0, 有‖Φ̂[u](t)‖ = ‖T [φ0](t)‖ ≤ e−νt‖φ0‖, 其
中ν = min{µ−, c−}. 因此‖Φ̂(t)‖ ≤ e−νt, ∀t > 0. 进而∀t > 0以及u ∈ B ⊂ Y+有

κ(Φ(t)(B)) ≤ κ(Φ̂(t)(B)) + κ(Φ̃(t)(B)) ≤ ‖Φ̂(t)κ(B)‖ ≤ e−νtκ(B).
即Φ(t)是e−νt阶κ压缩的.

引理2.3结合文献[15]中的引理2.3.5, 可知解半流{Φt}t≥0是渐近光滑的. 应用文献[15]中的
定理3.4.8并结合系统的耗散性可以得到系统全局吸引子的存在性, 即如下定理.

定定定理理理2.2 对于t > 0, 解半流Φ(t) : Y+ → Y+在Y+上存在全局吸引子.

进一步可以得到下面的集合是系统的正不变集.
D = {φ0 ∈ Y+ | 0 < N(x, t) ≤ C2, 0 < W (x, t) ≤ C3 } .

§3 基本再生数以及阈值动力学

本节将应用再生算子理论给出模型(1)的基本再生数, 并证明其是一个重要的阈值参数. 由
文献[12]中的命题2.3可知, 有如下引理成立.

引引引理理理3.1 系统(1)有唯一的无病稳态E0 = (S0(x), 0, 0), 其中S0(x) = (−AS)−1Λ(x)在Ω上
是Lipschitz连续的.

系统(1)的染病仓室在E0处进行线性化, 得到



∂I(x, t)
∂t

= AII(x, t) + f ′I(S
0(x), 0)I(x, t) + g′W (S0(x), 0)W (x, t),

∂W (x, t)
∂t

= AW W (x, t) + p(x)I(x, t).

对上述方程组应用常数变易公式, 有



I(x, t) = eAItφI(x) +
∫ t

0

eAI(t−s)[f ′I(S
0(x), 0)I(x, s) + g′W (S0(x), 0)W (x, s)]ds,

W (x, t) = eAW tφW (x) + p(x)
∫ t

0

eAW (t−s)I(x, s)ds.

(3)
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将(3)中的第二个方程带入到第一个方程中, 并假定φW (x) = 0, 有

I(x, t) = φI(x)eAIt +
∫ t

0

eAI(t−s)f ′I(S
0(x), 0)I(s, x)ds+

p(x)
∫ t

0

eAI(t−s)g′W (S0(x), 0)
∫ s

0

eAW (s−τ)dτds =

φI(x)eAIt +
∫ t

0

eAIsf ′I(S
0(x), 0)I(t− s, x)ds+

p(x)
∫ t

0

eAIsg′W (S0(x), 0)
∫ s

0

eAW τI(t− s− τ)dτds. (4)

可以得到(4)是一个更新方程. 定义再生算子

R[φ](x) =f ′I(S0(x), 0)
∫ ∞

0

eAIsdsφ(x) + p(x)g′W (S0(x), 0)
∫ ∞

0

eAIsds

∫ ∞

0

eAW τdτφ(x) =

f ′I(S0(x), 0)(−AI)−1φ(x) + p(x)g′W (S0(x), 0)(−AI)−1(−AW )−1φ(x).
显然R是正的紧算子. 进一步, 定义算子R的谱半径为基本再生数[16], 即<0 = r(R).

下面令L1[φ](x) + L2[φ](x) = L : X→ X, 其中
L1[φ](x) = f ′I(S

0(x), 0)φ(x) + p(x)g′W (S0(x), 0)(−AW )−1φ(x), L2[φ](x) = AIφ(x).
应用上述分析, 可以得到算子L1是正且紧的, 算子L2生成一个正的连续半群T2(t) =

{
eAIt

}
t≥0

.

引引引理理理3.2 r(R) − 1与s (L)具有相同的符号, 其中s(L) = sup{Reλ|λ ∈ σ(L)}表示L的谱半
径, σ(·)表示L的谱界.

证证证 首先证明r(R) = 1当且仅当s (L0) = 0. 假设r(R) = 1, 则R[φ](x) = φ(x). 对于任意
的φ ∈ X, 由R的定义有

f ′I(S0(x), 0)(−AI)−1φ(x) + p(x)g′W (S0(x), 0)(−AI)−1(−AW )−1φ(x) = φ(x).
将−AI作用到上式两端得到L[φ](x) = 0, 因此s (L) = 0. 另一方面, 假设s (L) = 0, 则存在特征
函数ψ使得Lψ(x) = 0. 由L的定义, 可得

f ′I(S
0(x), 0)ψ(x) + p(x)g′W (S0(x), 0)(−AW )−1ψ(x) = ψ(x).

将(−AI)
−1
作用到上式两端得到L[ψ](x) = 0, 可得<[ψ](x) = ψ(x), 即r(R) = 1.

下面将证明当r(R) > 1时s(L) > 0. 由Krein-Rutman定理可知存在特征值η > 1以及
特征向量φ ∈ X+使得R[φ](x) = ηφ(x) = (η − 1)φ(x) + φ(x). 将−A2同时作用于上式两端,
有Lφ = (η − 1)φ. 因此s(L) > 0. 假设算子L有特征值s(L) < 0以及正的特征向量φ. 这意
味着L[φ](x) = s(L)φ(x). 另一方面, 将(−AI)−1作用到上式两端可以得到<[φ](x) = (s(L) +
1)φ(x). 因此, <0 > 1时s(L) > 0. 同理可以证明<0 < 1时s(L) < 0.

应用文献[16]中的结论, 可以得到下述定理.

定定定理理理3.1 如果<0 < 1, 则系统(1)的无病稳态E0是局部渐近稳定的.

下面将关注系统(1)的无病稳态E0的全局吸引性.

定定定理理理3.2 如果<0 < 1, 则系统(1)的无病稳态E0是全局吸引的.

证 构造Lyapunov泛函

W (t) =
∫

Ω

[VI(x, t) + VW (x, t)]dx, ∀t ≥ 0,

其中VI(x, t) = I(x, t), VW (x, t) = g′W (S0, 0)W (x, t)(−AW )−1. 由系统(1)正解的全局存在性可
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知, VI(x, t)和VW (x, t)是有定义的. 对于任意的t ∈ R+以及x ∈ Ω , 计算VI关于t的导数可得
∂VI(x, t)

∂t

∣∣∣∣
(1.2)

= dI

∫

Ω

J(x− y)[I(y, t)− I(x, t)]dy+

f(S(x, t), I(x, t)) + g(S(x, t),W (x, t))− (µ(x) + α(x))I(x, t) ≤
f ′I(S

0, 0)I(x, t) + g′W (S0, 0)W (x, t) +AII(x, t).
类似地, VW关于t的导数为

∂VW (x, t)
∂t

∣∣∣∣
(1.2)

= g′W (S0, 0)p(x)(−AW )−1I(x, t)− g′W (S0, 0)W (x, t).

将上述两式相加, 得到
∂W (t)

∂t

∣∣∣∣
(1.2)

≤
∫

Ω

f ′I(S
0, 0)I(x, t) + g′W (S0, 0)p(x)(−AW )−1I(x, t) +AII(x, t)dx =

∫

Ω

LI(x, t)dx.

因为<0 < 1可知s(L) < 0, 进而∂W (t)
∂t

∣∣
(1.2)

≤ 0. 应用Kraskovkii-LaSalle定理[17]可得系统(1)的无
病稳态E0是全局吸引的.

下面将证明一种特殊形式下, 即
f(S(x, t), I(x, t)) = S(x, t)f1(I(x, t)), g(S(x, t),W (x, t)) = S(x, t)g1(W (x, t)) (5)

时, 系统(1)的地方病稳态的全局性质. 下面将证明系统的持久性, 定义ρ : D → X为
ρ(Φt(φ)) = φ1(x, t)f(φ2(x, t)) + φ1(x, t)g(φ3(x, t)).

进一步定义如下空间

D0 := {φ ∈ D| φ2(x, ·) 6≡ 0 以及 φ3(x, ·) 6≡ 0},
∂D0 := {φ ∈ D| φ2(x, ·) ≡ 0 或 φ3(x, ·) ≡ 0},
M∂ := {φ0 ∈ ∂D0| Φt(φ0) ∈ ∂D0, ∀t ≥ 0}.

令ω(φ)是系统(1)解轨道γ+(φ) = {Φt(φ)|t ≥ 0}的ω极限集, 由文献[12]的引理4.1可知

引引引理理理3.3 对于任意φ0 ∈ M∂ , 有ω(φ0) = {E0}.

现在证明一致弱ρ-持久.

定定定理理理3.3 如果<0 > 1且(5)成立, 则系统(1)是一致弱ρ-持久的, 即存在正常数ε使得

lim sup
t→∞

|ρ(Φt(φ))|X ≥ ε, ∀φ0 ∈ D0.

证证证 如果<0 > 1, 则存在充分小的ε > 0使得
(S0(x)− ε)f ′I(0)(−AI)−1φ(x) + (S0(x)− ε)p(x)g′W (0)(−AI)−1(−AW )−1φ(x) > 1.

即

(−AS)−1(Λ(x)− ε)
[
f ′I(0)(−AI)−1φ(x) + p(x)g′W (0)(−AI)−1(−AW )−1

]
φ(x) > 1. (6)

应用反证法, 假设存在T1 > 0使得对于任意的(x, t) ∈ Ω × [T1,∞), 有ρ(Φt(φ)) < ε. 由常
数变易公式以及系统(1)的第一个方程, 存在T2 > T1使得对于任意的(x, t) ∈ Ω × [T2,∞),
有S(x, t) ≥ (−AS)−1(Λ(x) − ε). 此外, 由假设(A2)知f1(I)/I和g1(W )/W是非增的函数, 对
于系统(1)的后两个方程, 存在T3 > 0使得对于任意的(x, t) ∈ Ω × [T3,∞), 有I(x, t) ≥∫ t

0
eAI(t−s)S(x, s)[f ′(0)I(x, s) + g′(0)W (x, s)]ds, 以及W (x, t) ≥ ∫ t

0
eAW (t−s)k(x)I(x, s)ds. 因
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此, 可以得到

I(x, t) ≥ (−AS)−1(Λ(x)− ε)
[
f ′(0)

∫ t

0

eAI(t−s)I(x, s)ds+

g′(0)
∫ t

0

eAI(t−s)

∫ s

0

eAW (t−τ)k(x)I(x, τ)dτds

]
.

应用Laplace变换得到

Î(x, t) ≥ (−AS)−1(Λ(x)− ε)
[
f ′(0)

∫ ∞

0

e−λt

∫ t

0

eAIsI(x, t− s)dsdt+

g′(0)
∫ ∞

0

e−λt

∫ t

0

∫ s

0

eAIseAW τI(x, t− s− τ)dτdsdt

]
.

由卷积公式及其性质, 可以得到

Î(x, t) ≥ (−AS)−1(Λ(x)− ε)
[
f ′(0)

∫ ∞

0

eAIse−λs

∫ ∞

0

I(x, t)dtds+

g′(0)
∫ ∞

0

eAIse−λs

∫ ∞

0

eAW τe−λτ

∫ ∞

0

e−λtI(x, t)dtdτds

]
.

定义Ĩ(x̂, λ) := minx∈Ω Î(x, λ)以及
R̂[ψ] := (−AS)−1(Λ(x)− ε)[f ′(0) ̂(−AI)−1[ψ](λ) + g′(0) ̂(−AI)−1(−AW )−1[ψ](λ)].

则Ĩ(x̂, λ) ≥ R̂[Ĩ](x̂, λ), 当λ → 0时, 与式(6)矛盾, 得证.

应用文献[18]中的定理5.2以及[12]中定理4.1, 有以下结论.

定定定理理理3.4 如果<0 > 1, 那么系统(1)在D0上是一致持久的.

定理3.4知系统(1)至少存在一个地方病平衡态E∗, 下面证明特殊情况下E∗的全局吸引性.

定定定理理理3.5 假设dI = dW = 0. 当<0 > 1且(5)成立时, 地方病平衡态E∗是全局吸引的.

证证证 对任意s > 0, 令ϕ(s) = s− 1− ln s. 构造Lyapunov泛函

L(t) =
∫

Ω

S∗(x)
3∑

i=1

Li(x, t)dx,

其中

L1(x, t) = S∗(x)ϕ
(

S(x, t)
S∗(x)

)
, L2(x, t) = I∗(x)ϕ

(
I(x, t)
I∗(x)

)
,

以及

L3(x, t) = A(x)W ∗(x)ϕ
(

W (x, t)
W ∗(x)

)
.

应用ϕ函数的性质, 很容易验证L(t) ≥ 0. 对于上述泛函有
∂L1(x, t)

∂t
= − µ(x)

S(x, t)
(S∗(x)− S(x, t))2 +

(
1− S∗(x)

S(x, t)

)
[S∗(x)f1(I∗(x))− S(x, t)f(I(x, t))]+

(
1− S∗(x)

S(x, t)

)
[S∗(x)g1(W ∗(x))− S(x, t)g(W (x, t))]+

dS

(
1− S∗(x)

S(x, t)

) ∫

Ω

J1(x− y)S(y, t)dy + dS

(
1− S(x, t)

S∗(x)

) ∫

Ω

J1(x− y)S∗(y)dy.
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下面计算L2的导数
∂L2(x, t)

∂t
=

(
1− I∗(x)

I(x, t)

)
dI

(∫

Ω

J2(x− y)Ih(y, t)dy − Ih(x, t)
)

+
(

1− I∗(x)
I(x, t)

)
(S(x, t)f(I(x, t)) + S(x, t)g(W (x, t))− α(x)I(x, t)) .

利用平衡点条件S∗(x)f(I∗(x)) + S∗(x)g(W ∗(x))− α(x)I∗(x) = 0, 可得
∂L2(x, t)

∂t
= S(x, t)f(I(x, t)) + S(x, t)g(W (x, t))−

S∗(x)f(I∗(x))
I(x, t)
I∗(x)

− S∗(x)g(W ∗(x))
I(x, t)
I∗(x)

−

S∗(x)f1(I∗(x))
S(x, t)f1(I(x, t))I∗(x)
S∗(x)f1(I∗(x))I(x, t)

−

S∗(x)g1(W ∗(x))
S(x, t)g1(W (x, t))I∗(x)
S∗(x)g1(W ∗(x))I(x, t)

+ S∗(x)f1(I∗(x)) + S∗(x)g1(W ∗(x)).

应用关系k(x)I∗(x) = c(x)W ∗(x), 计算L3的导数, 得到
∂L3(x, t)

∂t
= A(x)

(
1− W ∗(x)

W (x, t)

)
(k(x)I(x, t)− c(x)W (x, t)) =

A(x)k(x)I(x, t)−A(x)k(x)I∗(x)
W (x, t)
W ∗(x)

−

A(x)k(x)I(x, t)
W ∗(x)
W (x, t)

+ A(x)k(x)I∗(x).

令

Π =dS

∫

Ω

∫

Ω

J1(x− y)S∗(x)S(y, t)
(

1− S∗(x)
S(x, t)

)
dydx+

dS

∫

Ω

∫

Ω

J1(x− y)S∗(x)S∗(y)
(

1− S

S∗(x)

)
dydx =

dS

∫

Ω

∫

Ω

J1(x− y)S∗(x)S∗(y)
(

1− S(x, t)
S∗(x)

+
S(y, t)
S∗(y)

− S∗(x)S(y, t)
S(x, t)S∗(y)

)
dydx,

并取

A(x) =
S∗(x)g1(W ∗)

k(x)I∗(x)
,

经过整理可以得到
dL(t)

dt
=−

∫

Ω

−µ(x)S∗(x)
S(x, t)

(S∗(x)− S(x, t))2 dx + Π−
∫

Ω

(S∗(x))2f1(I∗(x))
(

ϕ

(
S∗(x)
S(x, t)

)
+ ϕ

(
S(x, t)f1(I(x, t)I∗(x))
S∗(x)f1(I∗(x))I(x, t)

))
dx−

∫

Ω

(S∗(x))2f1(I∗(x))
(

ϕ

(
I(x, t)
I∗(x)

)
− ϕ

(
f1(I(x, t))
f1(I∗(x))

))
dx−

∫

Ω

(S∗(x))2g1(W ∗(x))
(

ϕ

(
S∗(x)
S(x, t)

)
+ ϕ

(
S(x, t)g1(W (x, t)I∗(x))
S∗(x)g1(W ∗(x))I(x, t)

))
dx−

∫

Ω

(S∗(x))2g1(W ∗(x))
(

ϕ

(
I(x, t)W ∗(x)
I∗(x)W (x, t)

))
dx−

∫

Ω

(S∗(x))2g1(W ∗(x))
(

ϕ

(
W (x, t)
W ∗(x)

)
− ϕ

(
g1(W (x, t))
g1(W ∗(x))

))
dx.
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另一方面, 对Π交换积分次序, 得到

Π =dS

∫

Ω

∫

Ω

J1(x− y)S∗(x)S(y)
(

1− S(x, t)
S∗(x)

+
S(y, t)
S∗(y)

− S∗(x)S(y, t)
S(x, t)S∗(y)

)
dxdy =

dS

∫

Ω

∫

Ω

J1(y − x)S∗(y)S∗(x)
(

1− S(y, t)
S∗(y)

+
S(x, t)
S∗(x)

− S∗(y)S(x, t)
S(y, t)S∗(x)

)
dydx =

dS

∫

Ω

∫

Ω

J1(x− y)S∗(y)S∗(x)
(

1− S(y, t)
S∗(y)

+
S(x, t)
S∗(x)

− S∗(y)S(x, t)
S(y, t)S∗(x)

)
dydx.

可以得到

Π =
1
2

∫

Ω

∫

Ω

J1(x− y)S∗(y)S∗(x)
(

2− S∗(x)S(y, t)
S(x, t)S∗(y)

− S∗(y)S(x, t)
S(y, t)S∗(x)

)
dydx.

由假设(A2)有

ϕ

(
f1(I(x, t))
f1(I∗(x))

)
− ϕ

(
I(x, t)
I∗(x)

)
≤ 0, ϕ

(
g1(W (x, t))
g1(W ∗(x))

)
− ϕ

(
W (x, t)
W ∗(x)

)
≤ 0.

因此dL(t)
dt ≤ 0, 并且dL(t)

dt = 0当且仅当(S, I,W ) = (S∗, I∗,W ∗), 进而E∗是全局吸引的.

§4 结论
本论文建立了一类具有非局部扩散的霍乱传染病模型. 在合理的假设下, 对模型的适定性

进行了分析. 具体地, 通过将模型转化为抽象的Cauchy问题, 应用算子理论和反证法, 得到了系
统正解的局部存在性. 进一步通过证明系统的最终有界性, 得到了全局解的存在性. 针对非局部
算子带来的非紧性问题, 通过引入Kuratowski测度的相关理论证明了系统全局吸引子的存在性.
从生物学角度来看, 基本再生数是传染病中最重要的概念之一, 也是疾病爆发与否的关键阈值.
本论文通过定义基本再生数, 得到了系统平衡态的全局性质, 即当基本再生数小于1时, 系统的
无病平衡态是全局渐近稳定; 当基本再生数大于1时, 系统是一致持久的. 此外, 在一定条件下,
系统存在全局吸引的地方病平衡态. 这说明基本再生数是控制霍乱传播的重要阈值. 注意到, 在
证明地方病平衡态时, 需要假设除了易感者的其他舱室的扩散系数为零. 如何得到全部扩散系
数不为零时系统地方病平衡点的全局行为, 这将是今后的研究内容.
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Abstract: This paper established a cholera epidemic model with nonlocal diffusion and obtains

the global existence of positive solutions and the global attractor. By defining the basic reproduction

number, the global properties of the steady state of the system are obtained, that is, when the basic

reproduction number is less than 1, the disease-free steady state is globally attractive; When the basic

reproduction number is greater than 1, the system is uniformly persistent. In addition, under certain

conditions, the system has a globally attractive endemic disease steady state. This indicates that the

basic reproduction number is an important threshold for controlling the disease.
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