
高校应用数学学报
2025, 40(4): 435-444

星型网络的1-额外3-分支连通性

张国珍∗, 岳志敏

(山西大学 数学与统计学院, 山西太原 030006)

摘 要: 星型网络是重要的互连网络之一, 也是超立方体的替代网络. 连通度可以衡
量网络的可靠性, 额外连通度和分支连通度是传统连通度的推广, 而额外分支连通度
是额外连通度和分支连通度的结合, 因而可以作为度量网络可靠性的重要参数. 此文
研究了星型网络Sn的1-额外3-分支连通度cκ1

3(Sn)和1-额外3-分支边连通度cλ1
3(Sn), 确

定了cκ1
3(Sn) = 4n− 10, cλ1

3(Sn) = 4n− 9, 研究结果可以为度量星型网络的可靠性提
供一些新的依据.
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§1 引 言

互连网络在并行分布式系统中起着重要的作用, 它的拓扑结构通常被刻画为一个图G, 常
用G = (V, E)来表示, 其中V是图G的顶点集, 在互连网络中它对应着处理器的集合, E是图G的

边集, 在互连网络中它对应着处理器之间的通信链接. 在顶点数不断增多的情况下, 互连网络发
生故障的可能性也变大, 因此怎样去度量互连网络的可靠性就显得十分重要. 一般习惯用连通度
来度量网络的可靠性, 但在实际中某个节点的所有邻点同时发生故障的可能性是极小的, 因此用
连通度来度量网络的可靠性是有缺陷的. 为了解决这一缺陷, Fàbrega等人[1]对每个连通分支的

点数进行了限制, 提出了额外连通度. Sampathkumar[2]则对连通分支的个数进行了限制, 从而
提出了分支连通度. 额外连通度和分支连通度自提出以来, 已经被应用在许多网络中[3-8].

2021年, Li等人[9]将对分支个数作限制的分支连通度和对分支中点数作限制的额外连通

度结合起来, 提出了h-额外r-分支连通度的概念. 一个图G的h-额外r-分支割是G的一个顶点

集S, 满足G − S至少有r个分支, 并且每个分支至少有h + 1个顶点. G的h-额外r-分支割的最小
基数称为G的h-额外r-分支连通度, 用cκh

r (G)表示. 在这篇文献中, 他们研究了超立方体的1-额
外r-分支连通度, 其中r ∈ {2, 3, 4}. Zhu等人[10]研究了超立方体的2-额外3-分支连通度. Yang等
人[11]将h-额外r-分支连通度拓展为h-额外r-分支边连通度. 一个图G的h-额外r-分支边割是G的
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一个边集F , 满足G − F至少有r个分支, 并且每个分支至少有h + 1个顶点. G的h-额外r-分支边
割的最小基数称为G的h-额外r-分支边连通度, 用cλh

r (G)表示. 在这篇文献中, 他们研究了超立
方体的h-额外3-分支边连通度, 其中1 ≤ h ≤ 2d

n
2 e−1 − 1, n ≥ 4; BC网络的2c-额外3-分支边连通

度, 其中0 ≤ c ≤ n− 2, n ≥ 4; 折叠立方体的h-额外3-分支边连通度, 其中1 ≤ h ≤ 2d
n
2 e−1 − 1,

n ≥ 4; 折叠立方体的2c-额外3-分支边连通度, 其中0 ≤ c ≤ n− 2, n ≥ 4.
星型网络Sn作为超立方体的替代网络之一, 具有高的连通度, 小的顶点度数, 结构对称等

优点, 因此已有许多学者对其进行了研究. 本文通过分析星型网络的结构性质, 研究它的1-额
外3-分支连通度和1-额外3-分支边连通度, 确定了cκ1

3(Sn) = 4n− 10, cλ1
3(Sn) = 4n− 9, 所得结

果能为度量星型网络的可靠性提供有益的参考.

§2 预备知识
设A和B是图G的两个非空顶点集, 用[A,B]表示一个端点在A中, 另一个端点在B中的所

有边的集合, 用G[A]表示以A为顶点集, 以两端点均在A中的边的全体为边集所组成的子图.
设w是图G的一个顶点, 用N(w)表示G中所有与w相邻的顶点的集合. 若对G中每一个顶点w, 都
有|N(w)| = k, 则称G是k-正则的. 记n个顶点的路为Pn, n个顶点的圈为Cn. 图1给出了n-星.
G中顶点数最多的分支称为大分支, 其余分支称为小分支.

图 1 n-星

图 2 星型网络S2, S3和S4
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n维星型网络记为Sn, 顶点集V (Sn) = {a1a2 · · · an | ai ∈ 〈n〉, i = 1, 2, · · · , n}, 其中〈n〉 =
{1, 2, · · · , n}, 边集

E (Sn) = {uv | u, v ∈ V (Sn) , u = a1 . . . ai . . . an, v = ai . . . a1 . . . an, 2 ≤ i ≤ n}.
显然|V (Sn)| = n!, Sn是(n− 1)-正则的, λ(Sn) = n− 1[12]. 当n ≥ 3时, Sn中最小圈为C6. 图2给
出了星型网络S2, S3和S4. Sn可以划分为n个Si

n, 1 ≤ i ≤ n, 其中V (Si
n) = {a1a2 · · · an−1i | aj ∈

〈n〉 \ {i}, j = 1, 2, · · · , n− 1}. 显然每个Si
n与Sn−1同构. 对于Sn中的顶点u = a1 · · · ai · · · an, v =

an · · · ai · · · a1, 称v是u的外邻点. Si
n中的每个顶点只有一个外邻点. 当n ≥ 3时, Sn中的任意

两个顶点之间至多只有一个公共邻点. 对于1 ≤ a < b ≤ n, 记S
[a,b]
n = G[V (Sa

n) ∪ V (Sa+1
n ) ∪

· · · ∪ V (Sb−1
n )∪ V (Sb

n)]. 当n ≥ 4时, 对于任意的i, j ∈ 〈n〉且i 6= j, 有|[V (Si
n), V (Sj

n)]| = (n− 2)!,
Si

n和Sj
n之间的边称为交叉边(例如图2星型网络S4中的虚线).
引理2.1[13] 当n ≥ 3时, 设F ⊆ E(Sn)且|F | ≤ 2n− 5, 则Sn − F连通或其小分支是一个孤

立点.
引理2.2[13] 当n ≥ 3时, 设F ⊆ E(Sn)且|F | ≤ 3n− 8, 则Sn − F连通或其小分支顶点总数

至多为2.
引理2.3[13] 设F ⊆ E(S4)且|F | ≤ 5, 则S4 − F连通或其小分支顶点总数至多为3.
引理2.4[13] 当n ≥ 4时, 设F ⊆ E(Sn)且|F | ≤ 4n − 11, 则Sn − F连通或其小分支顶点总

数至多为3.
引理2.5[14] 当n ≥ 4时, 设S ⊆ V (Sn)且|S| ≤ 4n− 11, 则Sn − S满足以下结论之一.
(1) Sn − S连通;
(2) Sn − S有两个分支, 小分支是路P3, 孤立边或孤立点;
(3) Sn − S有三个分支, 小分支是孤立点和孤立边或两个孤立点;
(4) Sn − S有四个分支, 小分支是三个孤立点.

§3 主要结果
定理3.1 当n ≥ 4时, cκ1

3(Sn) = 4n− 10.
证 首先证明当n ≥ 4时, cκ1

3(Sn) ≤ 4n− 10.
设u = 1234 · · ·n, v = 2134 · · ·n, x = 2314 · · ·n, y = 1324 · · ·n. 令S = N ({u, v}) ∪

N ({x, y}), 则Sn − S不连通, 其中两个分支是Sn [{u, v}]和Sn [{x, y}], 且|S| = 2 [2 (n− 1)− 2]−
2 = 4n − 10. 当n ≥ 4时, 由于n! − (4n− 10) − 4 > 0, 所以Sn − S至少有3个连通分支.
假设w是Sn − S − {u, v, x, y}的一个孤立点, 则有N (w) ⊆ S. 设{s, t} ⊆ N (w), 若{s, t} ⊆
N ({u, v}), 此时在Sn中形成C4或C5, 与Sn中最小圈为C6矛盾, 所以{s, t} * N ({u, v}). 同理,
{s, t} * N ({x, y}), 因此必有{s, t} ⊆ N ({u, v})∪N ({x, y}). 由于n ≥ 4时, |N(w)| = n−1 ≥ 3,
故设z ∈ N (w)\{s, t},则z /∈ N ({u, v})∪N ({x, y}),即z存在,与w是孤立点矛盾. 因此Sn−S的

每个连通分支的顶点数都至少为2. 注意到|S| = 4n− 10, 所以cκ1
3(Sn) ≤ 4n− 10.

下面证明当n ≥ 4时, cκ1
3(Sn) ≥ 4n− 10.

只需证明对任意满足|S| ≤ 4n−11的顶点集S, 都有Sn−S的分支数不超过2或者Sn−S有孤

立点即可. 根据引理2.5可得结论成立. 因此要使S是Sn的1-额外3-分支割, 需满足|S| ≥ 4n− 10,
所以cκ1

3(Sn) ≥ 4n− 10.
综上可得当n ≥ 4时, cκ1

3(Sn) = 4n− 10.
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引理3.1 当n ≥ 4时, 设F ⊆ E(Sn)且|F | ≤ 4n− 10, 则Sn − F满足以下结论之一.

(1) Sn − F连通;

(2) Sn − F有两个分支, 小分支是路P4, 4-星, 路P3, 孤立边或孤立点;

(3) Sn − F有三个分支, 小分支是孤立点和孤立边或两个孤立点;

(4) Sn − F有四个分支, 小分支是三个孤立点.

证 以下证明中提到的故障边均指F中的边. 注意到引理3.1对n = 4成立, 结论可以通
过S4被直接检验. 因此下面只对n ≥ 5进行证明. 记Fi = F ∩ E(Si

n), 1 ≤ i ≤ n. 不失一般性,
设|F1| ≥ |F2| ≥ · · · ≥ |Fn|. 记J = {i ∈ 〈n〉 | |Fi| ≥ n − 2}, 则|J | ≤ 3. 否则|J | ≥ 4, 此时
有|F | ≥ 4(n− 2) = 4n− 8 > 4n− 10 ≥ |F |, 矛盾. 设Si

n − Fi中的大分支为Hi, 1 ≤ i ≤ n. 考虑
以下四种情形.

情形1 |J | = 0.

对于任意的1 ≤ i ≤ n, |Fi| ≤ n−3 < n−2 = λ(Si
n) ,所以Si

n−Fi是连通的. 对任意两两不等
的a, b, c ∈ 〈n〉,当[V (Sa

n), V (Sb
n)] * F时, Sa

n−Fa和Sb
n−Fb通过交叉边相连. 当[V (Sa

n), V (Sb
n)] ⊆

F时, 若[V (Sa
n), V (Sc

n)] ⊆ F , 则当n ≥ 5时, 有|[V (Sa
n), V (Sb

n)]|+ |[V (Sa
n), V (Sc

n)]| = 2(n− 2)! >

4n− 10, 矛盾, 因此[V (Sa
n), V (Sc

n)] * F . 同理有[V (Sb
n), V (Sc

n)] * F . 所以Sa
n − Fa和Sb

n − Fb可

以通过Sc
n − Fc相连. 根据a, b, c的任意性, 所以Sn − F连通, 结论(1)成立.

情形2 |J | = 1.

在这种情形下, |F1| ≥ n − 2. 对于任意的i 6= 1, |Fi| ≤ n − 3 < n − 2 = λ(Si
n) , 所

以Si
n−Fi是连通的. 由于|F | − |F1| ≤ (4n− 10)− (n− 2) = 3n− 8, 且对任意两两不等的a, b, c ∈

〈n〉\{1},当[V (Sa
n), V (Sb

n)] * F时, Sa
n−Fa和Sb

n−Fb通过交叉边相连. 当[V (Sa
n), V (Sb

n)] ⊆ F时,
若[V (Sa

n), V (Sc
n)] ⊆ F ,则当n ≥ 5时,有|[V (Sa

n), V (Sb
n)]|+ |[V (Sa

n), V (Sc
n)]| = 2(n−2)! > 3n−8,

矛盾, 因此[V (Sa
n), V (Sc

n)] * F . 同理有[V (Sb
n), V (Sc

n)] * F . 所以Sa
n − Fa和Sb

n − Fb可以通

过Sc
n − Fc相连. 根据a, b, c的任意性, 所以G = Sn − F − V (S1

n)连通. 考虑以下两种情形.

情形2.1 n− 2 ≤ |F1| ≤ 4n− 15.

由于|F1| ≤ 4n − 15 = 4(n − 1) − 11, 所以根据引理2.4可得S1
n − F1连通或其小分支顶点总

数至多为3, 即|V (H1)| ≥ (n− 1)!− 3. 注意到Si
n中的每个顶点仅有一个外邻点, 所以当n ≥ 5时,

由于|[V (H1), V (S[2,n]
n )]| ≥ (n− 1)!− 3 > 3n− 8, 所以H1连到G上. 因此Sn − F连通或其小分支

顶点总数至多为3, 结论(1)-(4)之一成立.

情形2.2 |F1| ≥ 4n− 14.

由于|F |−|F1| ≤ (4n−10)−(4n−14) = 4,即至多有4条故障边在V (S1
n)之外,所以S1

n−F1中

至多有4个顶点不能连到G. 由于|V (H1)| ≥ (n − 1)! − 4, 当n ≥ 5时, |[V (H1), V (S[2,n]
n )]| ≥

(n − 1)! − 4 > 3n − 8, 所以H1连到G上, 因此Sn − F连通或其小分支顶点总数至多为4. 下面
考虑Sn − F不连通的情形. 设Sn − F的小分支的顶点集合为A. 若|V (A)| ≤ 3, 即Sn − F的

小分支的顶点总数至多为3, 结论(1)-(4)之一成立. 若|V (A)| = 4, 则或者Sn − F有两个分

支, 小分支是路P4或4-星; 或者Sn − F有(a)三个分支, 小分支是孤立点u和路P3, 或小分支
是两条孤立边u1v1, u2v2; (b)四个分支, 小分支是两个孤立点u, v和一条孤立边xy; (c)五个
分支, 小分支是四个孤立点u1, u2, u3, u4. 设Sn − F满足(a)中小分支是孤立点u和路P3, 则
有|[{u}, V (P3)]| ≤ 1, 否则在Sn中形成C3或C4, 与Sn中最小圈为C6矛盾, 因此|F | ≥ (n − 1) +
[(n−2)+(n−3)+(n−2)]−1 = 4n−9 > 4n−10 ≥ |F |,矛盾. 设Sn−F满足(a)中小分支是两条
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孤立边u1v1, u2v2, 则有|[{u1, v1}, {u2, v2}]| ≤ 1, 否则在Sn中形成C3或C4, 与Sn中最小圈为C6矛

盾, 因此|F | ≥ [2(n− 1)− 2] + [2(n− 1)− 2]− 1 = 4n− 9 > 4n− 10 ≥ |F |, 矛盾. 设Sn − F满

足(b), 则有|[{u}, {x, y}]| + |[{v}, {x, y}]| + |[{u}, {v}]| ≤ 2, 否则在Sn中形成C3, 与Sn中最小圈

为C6矛盾, 因此|F | ≥ (n − 1) + (n − 1) + [2(n − 1) − 2] − 2 = 4n − 8 > 4n − 10 ≥ |F |, 矛盾.
设Sn − F满足(c), 则共有至多3条边在u1, u2, u3, u4之间, 否则在Sn中形成C3或C4, 与Sn中最小

圈为C6矛盾, 因此|F | ≥ 4(n − 1) − 3 = 4n − 7 > 4n − 10 ≥ |F |, 矛盾. 所以Sn − F不能是(a),
(b), (c)任一情形, 于是结论(1)-(4)之一成立.

情形3 |J | = 2.

在这种情形下, |F1| ≥ |F2| ≥ n− 2, |F1| ≤ |F | − |F2| ≤ (4n− 10)− (n− 2) = 3n− 8. 对于
任意的i 6= 1, 2, |Fi| ≤ n − 3 < n − 2 = λ(Si

n) , 所以Si
n − Fi是连通的. 由于|F | − |F1| − |F2| ≤

(4n−10)−2(n−2) = 2n−6,且对任意两两不等的a, b, c ∈ 〈n〉\{1, 2},当[V (Sa
n), V (Sb

n)] * F时,
Sa

n − Fa和Sb
n − Fb通过交叉边相连. 当[V (Sa

n), V (Sb
n)] ⊆ F时, 若[V (Sa

n), V (Sc
n)] ⊆ F , 则当n ≥

5时,有|[V (Sa
n), V (Sb

n)]|+ |[V (Sa
n), V (Sc

n)]| = 2(n−2)! > 2n−6,矛盾,因此[V (Sa
n), V (Sc

n)] * F .
同理有[V (Sb

n), V (Sc
n)] * F . 所以Sa

n − Fa和Sb
n − Fb可以通过Sc

n − Fc相连. 根据a, b, c的任意性,
所以G = Sn − F − V (S1

n) ∪ V (S2
n)连通. 考虑以下三种情形.

情形3.1 n− 2 ≤ |F1| ≤ 2n− 7.

注意到|F2| ≤ |F1|,所以n−2 ≤ |F2| ≤ 2n−7. 对于i = 1, 2,由于|Fi| ≤ 2n−7 = 2(n−1)−5,
所以根据引理2.1可得Si

n − Fi连通或其小分支是一个孤立点. 由于|V (Hi)| ≥ (n − 1)! − 1, 所以
当n ≥ 5时, |[V (Hi), V (S[3,n]

n )]| ≥ (n−1)!−1−(n−2)! > 2n−6,所以Hi连到G上,因此Sn−F连

通或其小分支顶点总数至多为2, 结论(1)-(3)之一成立.

情形3.2 2n− 6 ≤ |F1| ≤ 3n− 11.

由于|F1| ≤ 3n− 11 = 3(n− 1)− 8, 根据引理2.2可得S1
n − F1连通或其小分支顶点总数至多

为2. |F2| ≤ |F | − |F1| ≤ (4n − 10) − (2n − 6) = 2n − 4. 若|F2| = 2n − 4, 则|F1| ≥ 2n − 4, 此
时|F | ≥ |F1|+ |F2| ≥ (2n− 4) + (2n− 4) = 4n− 8 > 4n− 10 ≥ |F |, 矛盾, 所以|F2| ≤ 2n− 5.
当n ≥ 6时,由于|F2| ≤ 2n − 5 ≤ 3n − 11 = 3(n − 1) − 8, 根据引理2.2可得S2

n − F2连通或其小

分支顶点总数至多为2. 当n = 5时, 由于|F2| ≤ 2n − 5 = 5, 根据引理2.3可得S2
5 − F2连通或其

小分支顶点总数至多为3. 由于|V (H1)| ≥ (n − 1)! − 2, 所以当n ≥ 5时, |[V (H1), V (S[3,n]
n )]| ≥

(n− 1)!− 2− (n− 2)! > 2n− 6, 所以H1连到G上. 同理|V (H2)| ≥ (n− 1)!− 3, 所以当n ≥ 5时,
|[V (H2), V (S[3,n]

n )]| ≥ (n− 1)!− 3− (n− 2)! > 2n− 6, 所以H2连到G上.

下面先考虑S2
5 − F2的小分支共有3个顶点. 设S2

5 − F2的小分支是孤立点u和孤立边xy,
则有|[{u}, {x, y}]| ≤ 1, 否则在S5中形成C3, 与Sn中最小圈为C6矛盾, 因此当n = 5时, |F2| ≥
(n − 2) + [2(n − 2) − 2] − 1 = 3n − 9 > 2n − 5 ≥ |F2|, 矛盾. 设S2

5 − F2的小分支是3个孤立
点u1, u2, u3, 则共有至多2条边在u1, u2, u3之间, 否则在Sn中形成C3, 与Sn中最小圈为C6矛盾,
因此当n = 5时, |F2| ≥ 3(n− 2)− 2 = 3n− 8 > 2n− 5 ≥ |F2|, 矛盾. 设S2

5 −F2的小分支是路P3,
注意到S1

n −F1连通或其小分支顶点总数至多为2, 所以路P3的顶点至少有一个连到H1或G上, 于
是Sn − F连通或其小分支顶点总数至多为2, 结论(1)-(3)之一成立.

接着考虑S2
5 − F2连通或其小分支顶点总数至多为2, 结合n ≥ 6时, S2

n − F2连通或其小

分支顶点总数至多为2, 故以下考虑n ≥ 5时, S2
n − F2连通或其小分支顶点总数至多为2. 结

合S1
n − F1连通或其小分支顶点总数至多为2, 讨论以下三种情形.



440 高 校 应 用 数 学 学 报 第40卷第4期

情形3.2.1 S1
n − F1和S2

n − F2都连通.

注意到S1
n − F1 = H1, S

2
n − F2 = H2连到G, 所以Sn − F连通, 结论(1)成立.

情形3.2.2 S1
n − F1或S2

n − F2连通.

不妨设S1
n −F1连通, 则S1

n −F1 = H1连到G. 由于H2也连到G, 所以Sn −F连通或其小分支

顶点总数至多为2, 结论(1)-(3)之一成立.

情形3.2.3 S1
n − F1和S2

n − F2都不连通.

分成以下6种情况考虑.

(i) 设S1
n − F1和S2

n − F2的小分支都是一个孤立点, 则结论(1)-(3)之一成立.

(ii)设S1
n−F1和S2

n−F2的小分支都是一条孤立边,则或者(1), (2)之一成立;或者Sn−F有三

个分支, 小分支是两条孤立边u1v1, u2v2, 则有|[{u1, v1}, {u2, v2}]| ≤ 1, 否则在Sn中形成C3或C4,
与Sn中最小圈为C6矛盾, 因此|F | ≥ [2(n− 1)− 2] + [2(n− 1)− 2]− 1 = 4n− 9 > 4n− 10 ≥ |F |,
矛盾.

(iii) 设S1
n − F1和S2

n − F2的小分支都是两个孤立点, 则或者结论(1)-(4)之一成立; 或
者Sn − F有(a)三个分支, 小分支是两条孤立边u1v1, u2v2; (b)四个分支, 小分支是两个孤
立点u, v和一条孤立边xy; (c)五个分支, 小分支是四个孤立点u1, u2, u3, u4. 设Sn − F满

足(a), 则有|[{u1, v1}, {u2, v2}]| ≤ 1, 否则在Sn中形成C3或C4, 与Sn中最小圈为C6矛盾, 因
此|F | ≥ [2(n− 1)− 2] + [2(n− 1)− 2]− 1 = 4n− 9 > 4n− 10 ≥ |F |, 矛盾. 设Sn−F满足(b), 则
有|[{u}, {x, y}]|+ |[{v}, {x, y}]|+ |[{u}, {v}]| ≤ 2, 否则在Sn中形成C3, 与Sn中最小圈为C6矛盾,
因此|F | ≥ (n− 1) + (n− 1) + [2(n− 1)− 2]− 2 = 4n− 8 > 4n− 10 ≥ |F |, 矛盾. 设Sn − F满

足(c), 则共有至多有3条边在u1, u2, u3, u4之间, 否则在Sn中形成C3或C4, 与Sn中最小圈为C6矛

盾, 因此|F | ≥ 4(n− 1)− 3 = 4n− 7 > 4n− 10 ≥ |F |, 矛盾. 于是Sn −F不能是(a), (b), (c)任一
情形.

(iv) 设S1
n−F1和S2

n−F2的小分支分别是一个孤立点和一条孤立边, 或一条孤立边和一个孤
立点, 则结论(1)-(3)之一成立.

(v) 设S1
n − F1和S2

n − F2的小分支分别是一个孤立点和两个孤立点, 或两个孤立点和一个孤
立点, 则结论(1)-(4)之一成立.

(vi) 设S1
n−F1和S2

n−F2的小分支分别是一条孤立边和两个孤立点, 或两个孤立点和一条孤
立边,则或者结论(1)-(3)之一成立;或者Sn−F有(a)三个分支,小分支是孤立点u和路P3; (b)四个
分支, 小分支是两个孤立点u, v和一条孤立边xy. 设Sn − F满足(a), 则有|[{u}, V (P3)]| ≤ 1, 否则
在Sn中形成C3或C4,与Sn中最小圈为C6矛盾,因此|F | ≥ (n−1)+[(n−2)+(n−3)+(n−2)]−1 =
4n−9 > 4n−10 ≥ |F |,矛盾. 设Sn−F满足(b),则有|[{u}, {x, y}]|+|[{v}, {x, y}]|+|[{u}, {v}]| ≤
2,否则在Sn中形成C3,与Sn中最小圈为C6矛盾,因此|F | ≥ (n−1)+(n−1)+[2(n−1)−2]−2 =
4n− 8 > 4n− 10 ≥ |F |, 矛盾. 于是Sn − F不能是(a), (b)任一情形.

情形3.3 3n− 10 ≤ |F1| ≤ 3n− 8.

由于|F2| ≤ |F |−|F1| ≤ (4n−10)−(3n−10) = n,所以n−2 ≤ |F2| ≤ n. 由|F |−|F1|−|F2| ≤
(4n− 10)− (3n− 10)− (n− 2) = 2, 即在V (S1

n)∪ V (S2
n)之外至多有两条故障边. 当n ≥ 6时, 由

于|F2| ≤ n ≤ 3n−11 = 3(n−1)−8,根据引理2.2可得S2
n−F2连通或其小分支顶点总数至多为2.

当n = 5时, 由于|F2| ≤ n = 5, 根据引理2.3可得S2
n − F2连通或其小分支顶点总数至多为3. 由

于|V (H2)| ≥ (n− 1)!− 3, 所以当n ≥ 5时, |[V (H2), V (S[3,n]
n )]| ≥ (n− 1)!− 3− (n− 2)! > 2n− 6,
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所以H2连到G上.

下面先考虑S2
5 − F2的小分支共有3个顶点. 设S2

5 − F2的小分支是孤立点u和孤立边xy,
则有|[{u}, {x, y}]| ≤ 1, 否则在S5中形成C3, 与Sn中最小圈为C6矛盾, 因此当n = 5时, |F2| ≥
(n− 2) + [2(n− 2)− 2]− 1 = 3n− 9 > n, 矛盾. 设S2

5 − F2的小分支是3个孤立点u1, u2, u3, 则
共有至多2条边在u1, u2, u3之间, 否则在Sn中形成C3, 与Sn中最小圈为C6矛盾, 因此当n = 5时,
|F | ≥ 3(n − 2) − 2 = 3n − 8 > n, 矛盾. 设S2

5 − F2的小分支是路P3, 则当n = 5时, |F2| ≥
(n − 3) + (n − 4) + (n − 3) = 3n − 10 = 5, 结合|F2| ≤ 5, 得|F2| = 5, 此时|F1| ≤ |F | − |F2| ≤
(4n − 10) − (3n − 10) = n = 5, 根据引理2.3可得S1

5 − F1连通或其小分支顶点总数至多为3. 由
于|V (H1)| ≥ (n− 1)!− 3, 所以当n ≥ 5时, |[V (H1), V (S[3,n]

n )]| ≥ (n− 1)!− 3− (n− 2)! > 2n− 6,
所以H1连到G上. 若P3中每个顶点的外邻点都在S1

5 − F1的小分支中, 则S1
5 − F1的小分支有三个

顶点u, v, w. 若u, v, w都是孤立点, 则当n = 5时, |F1| ≥ 3(n− 2)− 2 = 3n− 8 = 7 > 5 ≥ |F1|, 矛
盾, 所以u, v, w中至少有两个顶点相邻, 此时u, v, w与S2

5中的路P3形成C4, 与Sn中最小圈为C6矛

盾. 因此S2
5 −F2的小分支是路P3时, P3中至少有一个顶点连到H1或G上, 此时S2

5 −F2连到G. 结
合S1

5 − F1连通或其小分支顶点总数至多为3, 所以Sn − F连通或其小分支顶点总数至多为3, 结
论(1)-(4)之一成立.

接着考虑S2
5 − F2连通或其小分支顶点总数至多为2, 结合n ≥ 6时, S2

n − F2连通或其小

分支顶点总数至多为2, 故以下考虑n ≥ 5时, S2
n − F2连通或其小分支顶点总数至多为2. 根

据S2
n − F2的结构, 讨论以下4种情况.

(i) 设S2
n − F2连通, 则当|F | − |F1| − |F2| = 0时, Sn − F连通; 当|F | − |F1| − |F2| = 1时,

Sn − F连通, 或者有两个分支, 小分支是孤立点; 当|F | − |F1| − |F2| = 2时, Sn − F连通, 或者有
两个分支, 小分支是孤立点或孤立边, 或者有三个分支, 小分支是两个孤立点. 结论(1)-(3)之一
成立.

(ii) 设S2
n−F2的小分支是孤立点, H2连到G, 则当|F | − |F1| − |F2| = 0时, Sn−F连通, 或者

有两个分支, 小分支是孤立边; 当|F | − |F1| − |F2| = 1时, Sn − F连通, 或者有两个分支, 小分支
是路P3,孤立边或孤立点,或者有三个分支,小分支是孤立点和孤立边; 当|F |− |F1|− |F2| = 2时,
Sn−F连通, 或者有两个分支, 小分支是路P4, 4-星, 路P3, 孤立边或孤立点, 或者有三个分支, 小
分支是孤立点和孤立边或两个孤立点. 结论(1)-(3)之一成立.

(iii) 设S2
n − F2的小分支是孤立边, H2连到G, 则当|F | − |F1| − |F2| = 0时, Sn − F连通;

当|F | − |F1| − |F2| = 1时, Sn−F连通, 或者有两个分支, 小分支是路P3或孤立点; 当|F | − |F1| −
|F2| = 2时, Sn − F连通, 或者有两个分支, 小分支是路P4, 路P3, 孤立边或孤立点. 结论(1),
(2)之一成立.

(iv)设S2
n−F2的小分支是两个孤立点, H2连到G,则当|F |−|F1|−|F2| = 0时, Sn−F连通,或

者有两个分支,小分支是孤立边;当|F |−|F1|−|F2| = 1时, Sn−F连通,或者有两个分支,小分支
是孤立点,孤立边或路P3,或者有三个分支,小分支是孤立点和孤立边; 当|F |− |F1|− |F2| = 2时,
Sn−F连通, 或者有两个分支, 小分支是路P4, 4-星, 路P3, 孤立边或孤立点, 或者有三个分支, 小
分支是孤立点和孤立边或两个孤立点. 结论(1)-(3)之一成立.

情形4 |J | = 3.

在这种情形下, |F1| ≥ |F2| ≥ |F3| ≥ n − 2. 对于任意的i 6= 1, 2, 3, |Fi| ≤ n − 3 < n − 2 =
λ(Si

n), 所以Si
n − Fi是连通的. 由于|F | − |F1| − |F2| − |F3| ≤ (4n − 10) − 3(n − 2) = n − 4, 且
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对任意不相等的a, b ∈ 〈n〉 \ {1, 2, 3}, 当n ≥ 5时, |[V (Sa
n), V (Sb

n)]| = (n− 2)! > n− 4, 所以Sa
n −

Fa和Sb
n−Fb通过交叉边相连. 根据a, b的任意性,所以G = Sn−F −V (S1

n)∪V (S2
n)∪V (S3

n)连通.
由于当n ≥ 5时, |F1| ≤ |F |− |F2|− |F3| ≤ (4n−10)−2(n−2) = 2n−6 ≤ 3n−11 = 3(n−1)−8,
根据引理2.2可得S1

n − F1连通或其小分支顶点总数至多为2. 但是当S1
n − F1的小分支是两个孤

立点u, v时, 由于|[{u}, {v}]| ≤ 1, 所以当n ≥ 5时, |F1| ≥ 2(n− 2)− 1 = 2n− 5 > 2n− 6 ≥ |F1|,
矛盾. 因此S1

n − F1连通或者有两个分支, 小分支是孤立点或孤立边. 同理, |F2| ≤ 2n − 6,
|F3| ≤ 2n − 6, 所以S2

n − F2和S3
n − F3连通, 或者有两个分支, 小分支是孤立点或孤立边. 对

于i = 1, 2, 3, 若Si
n − Fi中有孤立边, 则|Fi| ≥ 2(n− 2)− 2 = 2n− 6, 因此至多有一个Si

n − Fi中

有孤立边, 否则当n ≥ 5时, |F | ≥ 2(2n − 6) + (n − 2) = 5n − 14 > 4n − 10 ≥ |F |, 矛盾.
不妨设若有孤立边存在, 则存在于S1

n − F1中. 由于|V (H1)| ≥ (n − 1)! − 2, 所以当n ≥ 5时,
|[V (H1), V (S[4,n]

n )]| ≥ (n− 1)!− 2− 2(n− 2)! > n− 4, 所以H1连到G上. 对于i = 2, 3, |V (Hi)| ≥
(n− 1)!− 1, 所以当n ≥ 5时, |[V (Hi), V (S[4,n]

n )]| ≥ (n− 1)!− 1− 2(n− 2)! > n− 4, 所以Hi连

到G上. 考虑以下四种情形.

情形4.1 Si
n − Fi都连通, i = 1, 2, 3.

注意到Si
n − Fi = Hi连到G上, 所以Sn − F连通, 结论(1)成立.

情形4.2 仅有一个Si
n − Fi不连通, i = 1, 2, 3.

设仅有S1
n − F1不连通, 注意到S1

n − F1有两个分支, 小分支是孤立点或孤立边, H1连到G上.
由于S2

n − F2和S3
n − F3连通且连到G, 所以Sn − F连通, 或者有两个分支, 小分支是孤立点或孤

立边, 结论(1), (2)之一成立.

设仅有一个Si
n − Fi不连通, i = 2, 3, 不妨设S2

n − F2不连通, 注意到S2
n − F2有两个分支, 小

分支是孤立点, H2连到G上. 由于S1
n −F1和S3

n −F3连通且连到G, 所以Sn −F连通, 或者有两个
分支, 小分支是孤立点, 结论(1), (2)之一成立.

情形4.3 有两个Si
n − Fi不连通, i = 1, 2, 3.

设S1
n−F1和S2

n−F2不连通,注意到S1
n−F1的小分支是孤立点或孤立边, H1连到G, S2

n−F2的

小分支是孤立点, H2连到G. 由于S3
n − F3连通且连到G, 所以当S1

n − F1的小分支是孤立点时,
Sn − F连通或其小分支顶点总数至多为2, 结论(1)-(3)之一成立. 当S1

n − F1的小分支是孤立边

时, Sn − F连通或其小分支顶点总数至多为3, 结论(1)-(3)之一成立. S1
n − F1和S3

n − F3不连通时

类似可证结论(1)-(3)之一成立.

设S2
n−F2和S3

n−F3不连通, 注意到S2
n−F2和S3

n−F3的小分支都是一个孤立点, H2和H3连

到G. 由于S1
n − F1连通连到G, 所以Sn − F连通或其小分支顶点总数至多为2, 结论(1)-(3)之一

成立.

情形4.4 Si
n − Fi都不连通, i = 1, 2, 3.

注意到S1
n − F1的小分支是孤立点或孤立边, S2

n − F2和S3
n − F3的小分支都是一个孤立点,

且H1,H2,H3连到G上. 当S1
n − F1的小分支是孤立点时, Sn − F连通或其小分支顶点总数至多

为3,结论(1)-(4)之一成立. 当S1
n−F1的小分支是孤立边时, Sn−F连通或其小分支顶点总数至多

为4,则或者结论(1)-(3)之一成立,或者Sn−F有(a)三个分支,小分支是孤立点u和路P3,或者小分
支是两条孤立边u1v1, u2v2; (b)四个分支,小分支是两个孤立点u, v和一条孤立边xy. 设Sn−F满

足(a)中小分支是孤立点u和路P3, 则有|[{u}, V (P3)]| ≤ 1, 否则在Sn中形成C3或C4, 与Sn中最小

圈为C6矛盾,因此|F | ≥ (n−1)+[(n−2)+(n−3)+(n−2)]−1 = 4n−9 > 4n−10 ≥ |F |,矛盾.
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设Sn −F满足(a)中小分支是两条孤立边u1v1, u2v2, 则有|[{u1, v1}, {u2, v2}]| ≤ 1, 否则在Sn中形

成C3或C4, 与Sn中最小圈为C6矛盾, 因此|F | ≥ [2(n − 1) − 2] + [2(n − 1) − 2] − 1 = 4n − 9 >

4n− 10 ≥ |F |, 矛盾. 设Sn − F满足(b), 则有|[{u}, {x, y}]|+ |[{v}, {x, y}]|+ |[{u}, {v}]| ≤ 2, 否
则在Sn中形成C3, 与Sn中最小圈为C6矛盾, 因此|F | ≥ (n − 1) + (n − 1) + [2(n − 1) − 2] − 2 =
4n− 8 > 4n− 10 ≥ |F |, 矛盾. 因此Sn − F不能是(a), (b)任一情形.
定理3.2 当n ≥ 4时, cλ1

3(Sn) = 4n− 9.
证 首先证明当n ≥ 4时, cλ1

3(Sn) ≤ 4n− 9.
设u = 1234 · · ·n, v = 2134 · · ·n, x = 3124 · · ·n, y = 1324 · · ·n, 其中uv, vx, xy ∈ E(Sn).

令F = vx ∪ [{u, v, x, y}, V (Sn) \ {u, v, x, y}], 则Sn − F不连通, 其中两个分支是孤立边uv和xy.
当n ≥ 4时,由于n!−4 > 0,所以Sn−F至少有3个连通分支. 假设w是Sn−F −{u, v, x, y}的一个
孤立点, 则有N (w) ⊆ {u, v, x, y}. 注意到|[{w}, {u, v, x, y}]| ≤ 1, 否则在Sn中形成C3或C4或C5,
与Sn中最小圈为C6矛盾. 由于|N(w)| = n−1,所以|[{w}, V (Sn)\{w}]| = n−1,所以当n ≥ 4时,
|[{w}, V (Sn) \ {u, v, x, y, w}]| = |[{w}, V (Sn) \ {w}]| − |[{w}, {u, v, x, y}]| ≥ (n − 1) − 1 =
n − 2 ≥ 2, 因此至少有顶点s, t ∈ V (Sn) \ {u, v, x, y, w}, 即s, t /∈ {u, v, x, y}. 由于s, t ∈ N(w),
所以N(w) * {u, v, x, y}, 矛盾, 因此w不是孤立点. 所以Sn − F的每个连通分支的顶点数都至少

为2. 由于|F | = (n− 2) + (n− 3) + (n− 3) + (n− 2) + 1 = 4n− 9, 所以cλ1
3(Sn) ≤ 4n− 9.

下面证明当n ≥ 4时, cλ1
3(Sn) ≥ 4n− 9.

只需证明对任意满足|F | ≤ 4n− 10的边集F , 都有Sn − F的分支数不超过2或者Sn − F有孤

立点即可.根据引理3.1可得结论成立. 因此要使F是Sn的1-额外3-分支边割,需满足|F | ≥ 4n−9,
所以cλ1

3(Sn) ≥ 4n− 9.
综上可得当n ≥ 4时, cλ1

3(Sn) = 4n− 9.

§4 结论
本文研究并得到了星型网络的1-额外3-分支连通度和1-额外3-分支边连通度. 在此基础上,

还可以研究星型网络的更一般的h-额外r-分支连通度和h-额外r-分支边连通度, 其中h > 1,
r > 3. 通过类似的方法亦可以研究其它网络的h-额外r-分支连通度和h-额外r-分支边连通度.
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1-extra 3-component connectivity of star networks
ZHANG Guo-zhen, YUE Zhi-min

(School of Mathematics and Statistics, Shanxi University, Taiyuan 030006, China)

Abstract: The star network is one of the important interconnection networks and an alternative

network to the hypercube. Connectivity can measure the reliability of a network. Extra connectivity

and component connectivity are the generalizations of the traditional connectivity. The extra com-

ponent connectivity is the combination of the extra connectivity and component connectivity, so it

can be used as an important parameter to measure the reliability of a network. In this paper, the

1-extra 3-component connectivity cκ1
3(Sn) and 1-extra 3-component edge connectivity cλ1

3(Sn) of the

star network Sn are studied. Moreover, cκ1
3(Sn) = 4n − 10 and cλ1

3(Sn) = 4n − 9 are proved. The

results can provide some new perspectives for measuring the reliability of star networks.

Keywords: star networks; reliability; extra component connectivity; extra component edge con-

nectivity
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