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摘 要: 利用子图分割方法研究了图中存在分数(g, f)-因子的孤立韧度条件, 指出

若δ(G) ≥ ba2+b2+2ab+2a+2b−3
4a c且

I(G) ≥
{

(a+b−1)2

4a + b
a , 若a 6≡ b(mod 2),

(a+b−1)2−1
4a + b

a , 若a ≡ b(mod 2),
则G存在分数(g, f)-因子. 通过反例说明最小度条件和孤立韧度条件均是紧的.
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§1 引 言

本文讨论的图均为无向简单图, 且|V (G)| < ∞. 记δ(G)为最小度, 即图G中所有顶点

的度的最小值. 对任意顶点子集S, 设i(G − S)表示G − S中孤立点的数量. 设G1, G2是两个图,

则G1∨G2表示这样的图,它的顶点集为V (G1)∪V (G2),其边集合为E(G1)∪E(G2)∪{x1x2 |x1 ∈
V (G1), x2 ∈ V (G2)}. 文中使用的关于图论的标准术语和符号可参考[1], 不再一一叙述.

设a, b, k ∈ N满足1 ≤ a ≤ b和b ≥ 2, h : E(G) → [0, 1]为边集上的示性函数, g, f : V (G) →
N满足对任意x ∈ V (G)有g(x) ≤ f(x)成立. 若存在示性函数h使得对任意x ∈ V (G)有

g(x) ≤ dh
G(x) =

∑

x′∈N(x)

h(xx′) ≤ f(x)

成立, 则称G存在分数(g, f)-因子, 且该分数因子即为边集合Eh = {e ∈ E(G) |h(e) > 0}的生成
子图. 特别地, 若g(x) = a, f(x) = b对任意x ∈ V (G)成立, 则分数(g, f)-因子成为分数[a, b]-因

子. 更进一步, 若g(x) = f(x) = k对任意x ∈ V (G)成立, 则分数(g, f)-因子成为分数k-因子.

孤立韧度作为衡量网络易受攻击性的重要参数[2]. 对于非完全图G, 孤立韧度定义为

I(G) = min
{ |S|

i(G− S)

∣∣∣ S ⊂ V (G), i(G− S) > 1
}

.

若G是完全图, 由于满足i(G− S) > 1的S不存在, 因此规定I(G)的值为正无穷大.
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研究发现, 孤立韧度和分数因子之间有密切的关系. [3]指出若δ(G) ≥ k且I(G) ≥ k, 则

图G存在分数k-因子, 并且该孤立韧度和最小度条件都是紧的. [4]给出了在删除任意n个顶点的

条件下, 剩余子图依然存在分数k-因子的孤立韧度条件, 且通过反例说明该条件是紧的. 此外,

[4]指出该孤立韧度紧界在零点是不连续的, 即无法通过n ≥ 1的一般结果推导出n = 0的情况.

更进一步, [4]解释了零点不连续背后蕴含的内在机制. [5]得到关于分数[a, b]-因子存在性的改进

孤立韧度条件, 同时通过实例说明该条件是紧的. [6]对[4]中的结果进行了推广, 得到在删除任

意n个顶点的条件下, 剩余子图依然存在分数[a, b]-因子的孤立韧度条件, 并且说明该孤立韧度界

是最好的.

[7]用一种简洁的方法得到与本文相同的孤立韧度界. 然而, 由于方法上的局限性, [7]无法得

到关于孤立韧度条件最好性的反例, 只能通过先前论文的结果推断出孤立韧度界在a = b = k的

情况下(即分数(g, f)-因子退化为分数k-因子的假设下)是紧的. 另一方面, [7]中主要结论的最

小度条件不是紧的. 本文的主要贡献是利用子图分割的方法重新证明了[7]中关于分数(g, f)-因

子存在性的孤立韧度条件, 并且通过反例说明该条件对于任意满足a ≤ g(x) ≤ f(x) ≤ b的分

数(g, f)-因子框架都是紧的(事实上, 反例的结构隐藏在情况1.2和情况2.2的证明中). 同时, 本文

主要定理中的最小度条件也是紧的, 其反例的构造同样从证明过程中提取. §2给出定理证明的必
要引理. §3给出主要定理及详细证明, §4通过反例说明得到的界是紧的.

§2 预备知识
为了证明本文的主要结果, 需要如下关于一个图存在分数(g, f)-因子的充分必要条件.

引理2.1(见[8, p542]) 设G是一个图, g, f定义在顶点集上的非负整数值函数, 对任意x ∈
V (G)满足g(x) ≤ f(x). 则G存在分数(g, f)-因子当且仅当对任意S ⊆ V (G), 有

f(S)− g(T ) +
∑

x∈T

dG−S(x) ≥ 0

成立, 其中T = {x ∈ V (G)− S | dG−S(x) ≤ g(x)}.
在引理2.1中, 集合T由顶点子集S决定, 且可以写为T = {x ∈ V (G) − S | dG−S(x) ≤

g(x)− 1}. 值得注意的是, 本文需要文献[8]中定理2.1的如下等价形式.

引理2.2 设G是一个图, g, f是定义在顶点集上的非负整数值函数, 且对任意x ∈ V (G)满

足g(x) ≤ f(x). 则G存在分数(g, f)-因子当且仅当

f(S)− g(T ) +
∑

x∈T

dG−S(x) ≥ 0

对任意不相交的顶点子集S, T ⊆ V (G)都成立.

[9]刻画了特定条件下子图的独立集和覆盖集.

引理2.3(见[9, p1743]) 设G是一个图, H = G[T ]满足对任意x ∈ V (H)有dG(x) = k −
1且H的任何一个连通分支都不与Kk同构, 其中T ⊆ V (G)且k ≥ 2为整数. 则存在H的最大独立

集I和覆盖集C = V (H)− I满足

|V (H)| ≤
k∑

i=1

(k − i + 1)|I(i)| − |I(1)|
2

和

|C| ≤
k∑

i=1

(k − i)|I(i)| − |I(1)|
2 ,
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其中I(i) = {x ∈ I, dH(x) = k − i} (1 ≤ i ≤ k)且
k∑

i=1

|I(i)| = |I|.
注 在表达形式上, 引理2.3对原来文献[9]的引理2.2作了细微的修改.

§3 主要结果及证明
本文主要结论如下.

定理3.1 设G是一个图, a, b都是正整数满足1 ≤ a ≤ b且b ≥ 2, g和f是定义在V (G)上的整

数值函数, 对任意x ∈ V (G)满足a ≤ g(x) ≤ f(x) ≤ b. 若δ(G) ≥ ba2+b2+2ab+2a+2b−3
4a c且

I(G) ≥
{

(a+b−1)2

4a + b
a , 若a 6≡ b(mod 2),

(a+b−1)2−1
4a + b

a , 若a ≡ b(mod 2),
则G存在分数(g, f)-因子.

证 若G是完全图, 则结论由δ(G) ≥ ba2+b2+2ab+2a+2b−3
4a c直接得到. 在以下的讨论中, 均

设G为非完全图. 若G满足定理3.1的所有条件, 但不存在分数(g, f)-因子. 则由引理2.2, 存

在S, T ⊆ V (G), S ∩ T = ∅满足
a|S| − b|T |+

∑

x∈T

dG−S(x) ≤ f(S)− g(T ) +
∑

x∈T

dG−S(x) ≤ −1. (1)

在所有S,T组合中选择|T |最小的一对组合. 进而可知T 6= ∅, 且对任意x ∈ T有dG−S(x) ≤ b− 1.

设l是H ′ = G[T ]中与Kb同构的连通分支数, T0是H ′中满足dG−S(x) = 0的顶点的集合. 设子

图H是从H ′中删除T0以及l个与Kb同构的连通分支后得到的子图. 在H ′的每个Kb连通分支中选

取b− 1个顶点构成的顶点子集记为S′.

若|V (H)| = 0, 则由(1)以及δ(G) ≥ ba2+b2+2ab+2a+2b−3
4a c ≥ b + b b−1

a c可知
1 + bb− 1

a
c = b + bb− 1

a
c − (b− 1) ≤

ba
2 + b2 + 2ab + 2a + 2b− 3

4a
c − (b− 1) ≤ |S| ≤ b(|T0|+ l)− 1

a
,

进而可知i(G− S ∪ S′) = |T0|+ l ≥ 2. 根据孤立韧度的定义, 得到

I(G) ≤ |S ∪ S′|
i(G− S − S′)

≤ b b(|T0|+l)−1
a + l(b− 1)c
|T0|+ l

≤

b(b− 1 + b
a )(|T0|+ l)− 1

ac
|T0|+ l

= b− 1 +
b b(|T0|+l)−1

a c
|T0|+ l

.

设b(|T0|+ l)− 1 = m1a + c1, 其中m1 ∈ N且c1 ∈ {0, · · · , a− 1}. 则根据 1
a ≤ c1+1

a ≤ 1, 可得

I(G) ≤ b− 1 +
b(|T0|+l)−1

a − c1
a

|T0|+ l
=

b− 1 +
b

a
−

c1+1
a

|T0|+ l
< b− 1 +

b

a
,

当a, b奇偶性不同时, 这与I(G) ≥ (a+b−1)2

4a + b
a且b− 1 ≤ (a+b−1)2

4a 矛盾. 当a, b奇偶性相同时, 这

与I(G) ≥ (a+b−1)2−1
4a + b

a且b− 1 ≤ (a+b−1)2−1
4a 矛盾. 从而有|V (H)| > 0.

设H = H1∪H2,其中H1中的任何一个连通分支,它的顶点在G−S中的度都是b−1. 剩余连

通分支构成H2, 即H2的任意一个连通分支, 都存在这样的顶点, 它在G−S中的度至多为b− 2(由

此可知, 若H2 6= ∅, 则b ≥ 3). 由引理2.3, 可知H1存在最大独立集I1和覆盖集C1 = V (H1)− I1满
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足

|V (H1)| ≤
b∑

i=1

(b− i + 1)|I(i)| − |I(1)|
2

≤ (b− 1
2
)|I1|, (2)

和

|C1| ≤
b∑

i=1

(b− i)|I(i)| − |I(1)|
2

, (3)

其中I(i) = {v ∈ I1, dH1(v) = b− i}(1 ≤ i ≤ b)且
b∑

i=1

|I(i)| = |I1|.
设W = V (G)−S−T且U = S ∪S′∪C1∪ (NG(I1)∩W )∪NG−S(I2) = S ∪S′∪NG−S(I1)∪

NG−S(I2). 下面根据|T0|+ l的值是否为零分别进行讨论.

情况1 |T0|+ l 6= 0.

下面两种情况讨论H1或H2单独存在的情景.

情况 1.1 |I2| = 0.

若|I2| = 0. 则根据|V (H)| > 0可知|I1| > 0.

把I1再分成如下两个子集.

I11: 若存在v′ ∈ I1 \ {v}使得NG−S(v) ∩NG−S(v′) 6= ∅, 则v ∈ I11;

I12: 若NG−S(v) ∩NG−S(I1 \ {v}) = ∅, 则v ∈ I12.

利用引理2.3可得

a|S| ≤ |V (H1)|+ b|T0|+ lb− 1 ≤ (b− 1
2
)|I11|+ (b− 1)|I12|+ b(|T0|+ l)− 1,

|S| ≤ (
b

a
− 1

2a
)|I11|+ b− 1

a
|I12| − 1

a
+

b(|T0|+ l)
a

.

进而有

|S ∪ S′ ∪NG−S(I1)| ≤
(
b

a
− 1

2a
)|I11|+ b− 1

a
|I12| − 1

a
+

b(|T0|+ l)
a

+

l(b− 1) + (b− 1− 1
2
)|I11|+ (b− 1)|I12| ≤

(b− 1 +
b

a
)(|T0|+ l) + (b− 1 +

b

a
− 1

a
)|I1| − 1

a
≤

(b− 1 +
b

a
)(|I1|+ |T0|+ l)− 2

a
.

根据孤立韧度的定义,并且设b(|I1|+ l+ |T0|)−2 = m2a+c2(其中m2 ∈ N且c2 ∈ {0, · · · , a−1}),
得到

I(G) ≤ |S ∪ S′ ∪NG−S(I1)|
i(G− S ∪ S′ ∪NG−S(I1))

≤ b(b− 1 + b
a )(|I1|+ |T0|+ l)− 2

ac
|I1|+ l + |T0| =

b− 1 +
b b(|I1|+l+|T0|)−2

a c
|I1|+ l + |T0| = b− 1 +

b(|I1|+l+|T0|)−2−c2
a

|I1|+ l + |T0| =

b− 1 +
b

a
−

2+c2
a

|I1|+ l + |T0| < b− 1 +
b

a
,

当a, b奇偶性不同时, 这与I(G) ≥ (a+b−1)2

4a + b
a且b− 1 ≤ (a+b−1)2

4a 矛盾. 当a, b奇偶性相同时, 这

与I(G) ≥ (a+b−1)2−1
4a + b

a且b− 1 ≤ (a+b−1)2−1
4a 矛盾.
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情况 1.2 |I1| = 0.

若|I1| = 0, 则由|V (H)| > 0可知|I2| 6= 0, 进而b ≥ 3. 设I2 = {v1, v2, · · · , v|I2|}. 则|T | =

|V (H2)|+ |T0|+ bl,

a|S| ≤ b|T | − dG−S(T )− 1 ≤ b|T0|+ bl +
|I2|∑

i=1

(dG−S(vi) + 1)(b− dG−S(vi))− 1,

从而

|S| ≤ b(|T0|+ l)
a

+
∑|I2|

i=1(dG−S(vi) + 1)(b− dG−S(vi))
a

− 1
a
.

可知i(G− (S ∪ S′ ∪NG−S(I2))) ≥ 2. 若a 6≡ b(mod 2), 则

|S ∪ S′ ∪NG−S(I2)| ≤ |S|+ |S′|+ |NG−S(I2)| ≤
b(|T0|+ l)

a
+

∑|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
− 1

a
+ l(b− 1) +

|I2|∑

i=1

dG−S(vi) ≤

b|T0|
a

+ l(b− 1 +
b

a
) + |I2|(−

(a+b−1
2 )2

a
+

a + b− 1
a

a + b− 1
2

+
b

a
)− 1

a
=

b|T0|
a

+ l(b− 1 +
b

a
) + (

(a + b− 1)2

4a
+

b

a
)|I2| − 1

a
≤

(
(a + b− 1)2

4a
+

b

a
)(|T0|+ l + |I2|)− 1

a
.

根据孤立韧度的定义,并设((a+ b−1)2 +4b)(|T0|+ l+ |I2|)−4 = 4m3a+ c3(其中m3 ∈ N且c3 ∈
{0, · · · , 4a− 1}), 可得

I(G) ≤ |S ∪ S′ ∪NG−S(I2)|
i(G− (S ∪ S′ ∪NG−S(I2)))

≤ b( (a+b−1)2

4a + b
a )(|T0|+ l + |I2|)− 1

ac
|I2|+ |T0|+ l

=

( (a+b−1)2

4a + b
a )(|T0|+ l + |I2|)− 1

a − c3
4a

|I2|+ |T0|+ l
=

(a + b− 1)2

4a
+

b

a
−

1
a + c3

4a

|I2|+ |T0|+ l
<

(a + b− 1)2

4a
+

b

a
,

这与I(G) ≥ (a+b−1)2

4a + b
a矛盾.

若a ≡ b(mod 2), 则

|S ∪ S′ ∪NG−S(I2)| ≤ |S|+ |S′|+ |NG−S(I2)| ≤
b|T0|

a
+ l(b− 1 +

b

a
) + |I2|(−

(a+b
2 )2

a
+

a + b− 1
a

a + b

2
+

b

a
)− 1

a
=

b|T0|
a

+ l(b− 1 +
b

a
) + (

(a + b− 1)2 − 1
4a

+
b

a
)|I2| − 1

a
≤

(
(a + b− 1)2 − 1

4a
+

b

a
)(|T0|+ l + |I2|)− 1

a
.

根据孤立韧度的定义, 并设((a + b − 1)2 − 1 + 4b)(|T0| + l + |I2|) − 4 = 4m4a + c4(其中m4 ∈
N且c4 ∈ {0, · · · , 4a− 1}), 得到

I(G) ≤ |S ∪ S′ ∪NG−S(I2)|
i(G− (S ∪ S′ ∪NG−S(I2)))

≤ b( (a+b−1)2−1
4a + b

a )(|T0|+ l + |I2|)− 1
ac

|I2|+ |T0|+ l
=

( (a+b−1)2−1
4a + b

a )(|T0|+ l + |I2|)− 1
a − c4

4a

|I2|+ |T0|+ l
=
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(a + b− 1)2 − 1
4a

+
b

a
−

1
a + c4

4a

|I2|+ |T0|+ l
<

(a + b− 1)2 − 1
4a

+
b

a
,

这与I(G) ≥ (a+b−1)2−1
4a + b

a矛盾.

由于情况1.1和情况1.2都推出了矛盾, 可知I1和I2均不为空, 且b ≥ 3.

依然设I2 = {v1, v2, · · · , v|I2|}. 则|T | = |V (H1)|+ |V (H2)|+ |T0|+ bl,

a|S| ≤ b(|T0|+ l) + (b− 1
2
)|I11|+ (b− 1)|I12|+

|I2|∑

i=1

(dG−S(vi) + 1)(b− dG−S(vi))− 1,

且

|S| ≤ b(|T0|+ l) + (b− 1
2 )|I11|+ (b− 1)|I12|+

∑|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))− 1

a
=

b

a
(|T0|+ l) + (

b

a
− 1

2a
)|I11|+ b− 1

a
|I12|+

∑|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
− 1

a
.

可知i(G− (S ∪ S′ ∪NG−S(I1) ∪NG−S(I2))) ≥ 3. 若a 6≡ b(mod 2), 则

|S ∪ S′ ∪NG−S(I1) ∪NG−S(I2)| ≤ |S|+ |S′|+ |C1|+ |NG(I1) ∩W |+ |NG−S(I2)| ≤
b

a
(|T0|+ l) + (

b

a
− 1

2a
)|I11|+ b− 1

a
|I12|+

∑|I2|
i=1(dG−S(vi) + 1)(b− dG−S(vi))

a
−

1
a

+ l(b− 1) + (b− 1
2
− 1)|I11|+ (b− 1)|I12|+

|I2|∑

i=1

dG−S(vi) ≤

b

a
|T0|+ l(b− 1 +

b

a
) + (b− 1 +

b

a
− 1

a
)|I1|+ (

(a + b− 1)2

4a
+

b

a
)|I2| − 1

a
≤

(|T0|+ l + |I1|+ |I2|)( (a + b− 1)2

4a
+

b

a
)− 1

a
.

根据孤立韧度的定义, 并设((a + b − 1)2 + 4b)(|T0| + l + |I1| + |I2|) − 4 = 4m5a + c5(其

中m5 ∈ N且c5 ∈ {0, · · · , 4a− 1}), 可知
I(G) ≤ |S ∪ S′ ∪NG−S(I1) ∪NG−S(I2)|

i(G− (S ∪ S′ ∪NG−S(I1) ∪NG−S(I2)))
≤

b( (a+b−1)2

4a + b
a )(|T0|+ l + |I1|+ |I2|)− 1

ac
|I1|+ |I2|+ |T0|+ l

=
( (a+b−1)2

4a + b
a )(|T0|+ l + |I1|+ |I2|)− 1

a − c5
4a

|I1|+ |I2|+ |T0|+ l
=

(a + b− 1)2

4a
+

b

a
−

1
a + c5

4a

|I1|+ |I2|+ |T0|+ l
<

(a + b− 1)2

4a
+

b

a
,

这与I(G) ≥ (a+b−1)2

4a + b
a矛盾.

若a ≡ b(mod 2), 则

|S ∪ S′ ∪NG−S(I1) ∪NG−S(I2)| ≤ |S|+ |S′|+ |C1|+ |NG(I1) ∩W |+ |NG−S(I2)| ≤
b

a
|T0|+ l(b− 1 +

b

a
) + (b− 1 +

b

a
− 1

a
)|I1|+ (

(a + b− 1)2 − 1
4a

+
b

a
)|I2| − 1

a
≤

(|T0|+ l + |I1|+ |I2|)( (a + b− 1)2 − 1
4a

+
b

a
)− 1

a
.

根据孤立韧度的定义, 并设((a + b − 1)2 − 1 + 4b)(|T0| + l + |I1| + |I2|) − 4 = 4m6a + c6(其
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中m6 ∈ N且c6 ∈ {0, · · · , 4a− 1}), 从而有
I(G) ≤ |S ∪ S′ ∪NG−S(I1) ∪NG−S(I2)|

i(G− (S ∪ S′ ∪NG−S(I1) ∪NG−S(I2)))
≤

b( (a+b−1)2−1
4a + b

a )(|T0|+ l + |I1|+ |I2|)− 1
ac

|I1|+ |I2|+ |T0|+ l
=

( (a+b−1)2−1
4a + b

a )(|T0|+ l + |I1|+ |I2|)− 1
a − c6

4a

|I1|+ |I2|+ |T0|+ l
=

(a + b− 1)2 − 1
4a

+
b

a
−

1
a + c6

4a

|I1|+ |I2|+ |T0|+ l
<

(a + b− 1)2 − 1
4a

+
b

a
,

这与I(G) ≥ (a+b−1)2−1
4a + b

a矛盾.

情况2 |T0|+ l = 0.

与情况1类似, 首先讨论I1或I2有一方为空集的情况.

情况 2.1 |I2| = 0.

若|I2| = 0, 则|I1| 6= 0, |T | = |V (H1)|且a|S| ≤ b|T | − dG−S(T )− 1 = |T | − 1.

若|I1| = 1, 则|T | ≤ b− 1, |S| ≤ |T |−1
a ≤ b−2

a , 且

ba
2 + b2 + 2ab + 2a + 2b− 3

4a
c ≤ δ(G) ≤ |S|+ b− 1 ≤ bb− 2

a
c+ b− 1,

可验证矛盾. 从而有i(G− S ∪NG−S(I1)) ≥ |I1| ≥ 2. 根据情况1.1的推导, 可知

|S| ≤ (
b

a
− 1

2a
)|I11|+ b− 1

a
|I12| − 1

a
<

b|I1|
a

,

|S ∪NG−S(I1)| ≤ |S|+ |C1|+
k∑

i=1

(i− 1)|I(i)| ≤ (b− 1 +
b

a
)|I1| − 3

a
.

根据孤立韧度的定义, 并设b|I1| − 3 = m7a + c7(其中m7 ∈ N且c7 ∈ {0, · · · , a− 1}), 可得
I(G) ≤ |S ∪NG−S(I1)|

i(G− S ∪NG−S(I1))
≤ b(b− 1 + b

a )|I1| − 3
ac

|I1| = b− 1 +
b b|I1|−3

a c
|I1| =

b− 1 +
b|I1|−3−c7

a

|I1| = b− 1 +
b

a
−

3+c7
a

|I1| < b− 1 +
b

a
.

当a, b奇偶性不同时, 这与I(G) ≥ (a+b−1)2

4a + b
a且b− 1 ≤ (a+b−1)2

4a 矛盾. 当a, b奇偶性相同时, 这

与I(G) ≥ (a+b−1)2−1
4a + b

a且b− 1 ≤ (a+b−1)2−1
4a 矛盾.

情况 2.2 |I1| = 0.

若|I1| = 0, 则根据|V (H)| > 0有|I2| 6= 0, 从而b ≥ 3.

若|I2| = 1, 设dmin = min{dG−S(v)|v ∈ H2}, 则有dmin ∈ {1, · · · , b− 2},
a|S| ≤ b|T | − dG−S(T )− 1 ≤ |T |(b− dmin)− 1,

|S| ≤ |T |(b− dmin)− 1
a

≤ (dmin + 1)(b− dmin)− 1
a

,

且

δ(G) ≤ dmin + |S| ≤ dmin +
(dmin + 1)(b− dmin)− 1

a
=

−d2
min

a
+

(b + a− 1)dmin

a
+

b− 1
a

≤

− (a+b−1
2 )2

a
+

(b + a− 1)a+b−1
2

a
+

b− 1
a

=
a2 + b2 + 2ab− 2a + 2b− 3

4a
.
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进而有

δ(G) ≤ ba
2 + b2 + 2ab− 2a + 2b− 3

4a
c = ba

2 + b2 + 2ab + 2a + 2b− 3
4a

c − 1.

这与定理3.1中关于δ(G)的假设矛盾.

设I2 = {v1, v2, · · · , v|I2|}. 则有|T | = |V (H2)|, 且

|S| ≤
∑|I2|

i=1(dG−S(vi) + 1)(b− dG−S(vi))
a

− 1
a
.

从而有i(G− S ∪NG−S(I2)) ≥ |I2| ≥ 2. 根据情况1.2中的讨论, 若a 6≡ b(mod 2), 可知

|S ∪NG−S(I2)| ≤ |S|+ |NG−S(I2)| ≤ (
(a + b− 1)2

4a
+

b

a
)|I2| − 1

a
.

根据孤立韧度的定义,并设((a+b−1)2+4b)|I2|−4 = 4m8a+c8(其中m8 ∈ N且c8 ∈ {0, · · · , 4a−
1}), 可得

I(G) ≤ |S ∪NG−S(I2)|
i(G− S ∪NG−S(I2))

≤ b( (a+b−1)2

4a + b
a )|I2| − 1

ac
|I2| =

( (a+b−1)2

4a + b
a )|I2| − 1

a − c8
4a

|I2| =

(a + b− 1)2

4a
+

b

a
−

1
a + c8

4a

|I2| <
(a + b− 1)2

4a
+

b

a
,

这与I(G) ≥ (a+b−1)2

4a + b
a矛盾.

若a ≡ b(mod 2), 可知

|S ∪NG−S(I2)| ≤ |S|+ |NG−S(I2)| ≤ (
(a + b− 1)2 − 1

4a
+

b

a
)|I2| − 1

a
.

根据孤立韧度的定义, 并设((a + b − 1)2 − 1 + 4b)|I2| − 4 = 4m9a + c9(其中m9 ∈ N且c9 ∈
{0, · · · , 4a− 1}), 可得

I(G) ≤ |S ∪NG−S(I2)|
i(G− S ∪NG−S(I2))

≤ b( (a+b−1)2−1
4a + b

a )|I2| − 1
ac

|I2| =
( (a+b−1)2−1

4a + b
a )|I2| − 1

a − c9
4a

|I2| =

(a + b− 1)2 − 1
4a

+
b

a
−

1
a + c9

4a

|I2| <
(a + b− 1)2 − 1

4a
+

b

a
,

这与I(G) ≥ (a+b−1)2−1
4a + b

a矛盾.

根据情况2.1和情况2.2的分析可知I1和I2均不为空, 且b ≥ 3. 可得i(G − S ∪ NG−S(I1) ∪
NG−S(I2)) ≥ 2. 若a 6≡ b(mod 2),

|S ∪NG−S(I1) ∪NG−S(I2)| ≤ |S|+ |C1|+ |NG(I1) ∩W |+ |NG−S(I2)| ≤

(
(a + b− 1)2

4a
+

b

a
)(|I1|+ |I2|)− 1

a
.

根据孤立韧度的定义,并设((a+ b−1)2 +4b)(|I1|+ |I2|)−4 = 4m10a+ c10(其中m10 ∈ N且c10 ∈
{0, · · · , 4a− 1}), 可得

I(G) ≤ |S ∪NG−S(I1) ∪NG−S(I2)|
i(G− S ∪NG−S(I1) ∪NG−S(I2))

≤

b( (a+b−1)2

4a + b
a )(|I1|+ |I2|)− 1

ac
|I1|+ |I2| =

( (a+b−1)2

4a + b
a )(|I1|+ |I2|)− 1

a − c10
4a

|I1|+ |I2| =

(a + b− 1)2

4a
+

b

a
−

1
a + c10

4a

|I1|+ |I2| <
(a + b− 1)2

4a
+

b

a
,

这与I(G) ≥ (a+b−1)2

4a + b
a矛盾.
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若a ≡ b(mod 2), 则有

|S ∪NG−S(I1) ∪NG−S(I2)| ≤ (
(a + b− 1)2 − 1

4a
+

b

a
)(|I1|+ |I2|)− 1

a
.

根据孤立韧度的定义, 并设((a + b − 1)2 − 1 + 4b)(|I1| + |I2|) − 4 = 4m11a + c11(其中m11 ∈
N且c11 ∈ {0, · · · , 4a− 1}), 可得

I(G) ≤ |S ∪NG−S(I1) ∪NG−S(I2)|
i(G− S ∪NG−S(I1) ∪NG−S(I2))

≤

b( (a+b−1)2−1
4a + b

a )(|I1|+ |I2|)− 1
ac

|I1|+ |I2| =
( (a+b−1)2−1

4a + b
a )(|I1|+ |I2|)− 1

a − c11
4a

|I1|+ |I2| =

(a + b− 1)2 − 1
4a

+
b

a
−

1
a + c11

4a

|I1|+ |I2| <
(a + b− 1)2 − 1

4a
+

b

a
,

这与I(G) ≥ (a+b−1)2−1
4a + b

a矛盾.

由此, 所有的情况都推出矛盾, 进而定理3.1成立.

§4 讨论

首先说明最小度条件δ(G) ≥ ba2+b2+2ab+2a+2b−3
4a c是紧的. 设t ∈ N是任意大的正整数.

若a 6≡ b(mod 2), 则考察G1 = Kb b2−a2+2b−3
4a c ∨ (K a+b+1

2
∪ Kt); 若a ≡ b(mod 2), 则考察G2 =

Kb b2−a2+2a+2b−3
4a c ∨ (K a+b

2
∪Kt). 易知

δ(G1) = δ(G2) = ba
2 + b2 + 2ab− 2a + 2b− 3

4a
c = ba

2 + b2 + 2ab + 2a + 2b− 3
4a

c − 1.

根据t值的设定, I(G1)和I(G2)的值可以取到任意大. 对于G1, 设S = V (Kb b2−a2+2b−3
4a c)和T =

V (K a+b+1
2

); 对于G2, 设S = V (Kb b2−a2+2a+2b−3
4a c) and T = V (K a+b

2
). 无论是G1还是G2, 都有如

下假设: 对任意x ∈ S有f(x) = g(x) = a成立; 对任意x ∈ T有f(x) = g(x) = b成立. 通过计算可

验证

f(S)− g(T ) +
∑

x∈T

dG1−S(x) < 0, f(S)− g(T ) +
∑

x∈T

dG2−S(x) < 0.

进而G1和G2都没有分数(g, f)-因子.

下面两个例子来说明定理3.1中的孤立韧度是紧的. 若b 6≡ a(mod 2), 考察

G3 = Kb l(a+b−1)2
4a + bl−1

a c− l(a+b−1)
2

∨ (lK a+b+1
2

), 其中1 ≤ a ≤ b, b ≥ 2, l ≥ 2均为正整数. 首先验证

δ(G3) = b l(a + b− 1)2

4a
+

bl − 1
a

c − l(a + b− 1)
2

+
a + b− 1

2
≥

b2(a + b− 1)2

4a
+

2b− 1
a

c − 2(a + b− 1)
2

+
a + b− 1

2
=

b (a + b− 1)2

2a
+

2b− 1
a

c − a + b− 1
2

≥ ba
2 + b2 + 2ab + 2a + 2b− 3

4a
c.

即G3满足定理3.1中最小度的条件要求. 为了得到至少两个孤立点, 显然要删除

Kb l(a+b−1)2
4a + bl−1

a c− l(a+b−1)
2
中的所有顶点, 选择m(其中m ∈ [2, l]是整数)个K a+b+1

2
并对每个
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K a+b+1
2
删除其中的a+b−1

2 个顶点. 从而根据孤立韧度的定义, 得到

I(G3) = min
m∈{2,··· ,l}

{b
l(a+b−1)2

4a + bl−1
a c − l(a+b−1)

2 + ma+b−1
2

m
} =

a + b− 1
2

+ min
m∈{2,··· ,l}

{b
l(a+b−1)2

4a + bl−1
a c − l(a+b−1)

2

m
} =

a + b− 1
2

+
b l(a+b−1)2

4a + bl−1
a c − l(a+b−1)

2

l
=
b l(a+b−1)2

4a + bl−1
a c

l
.

设l(a + b− 1)2 + 4(bl − 1) = 4m12a + c12, 其中m12 ∈ N, c12 ∈ {0, 1, · · · , 4a− 1}. 进而

I(G3) =
l(a+b−1)2

4a + bl−1
a − c12

4a

l
=

(a + b− 1)2

4a
+

b

a
−

4+c12
4a

l
.

因此有I(G3) < (a+b−1)2

4a + b
a且 lim

l→+∞
I(G3) = (a+b−1)2

4a + b
a . 由于G3是有限图, l < +∞, 因

此I(G3)的值只能随着l的增大而无限逼近 (a+b−1)2

4a + b
a , 但不能到达该值. 设

S = V (Kb l(a+b−1)2
4a + bl−1

a c− l(a+b−1)
2

), T = V (lK a+b+1
2

), 对任意x ∈ S有f(x) = g(x) = a成立; 对任

意x ∈ T有f(x) = g(x) = b成立. 则有

f(S)− g(T ) +
∑

x∈T

dG3−S(x) =

ab l(a + b− 1)2

4a
+

lb− 1
a

c − a
l(a + b− 1)

2
− lb

a + b + 1
2

+ l
a + b + 1

2
(
a + b + 1

2
− 1) ≤

a(
l(a + b− 1)2

4a
+

lb− 1
a

)− al
a + b− 1

2
− l(a + b + 1)(b + 1− a)

4
= −1.

根据引理2.2可知G3不存在分数(g, f)-因子.

若b ≡ a(mod 2), 则考察G4 = Kb l((a+b−1)2−1)
4a + lb−1

a c− l(a+b−2)
2

∨ (lK a+b
2

), 其中1 ≤ a ≤ b,

b ≥ 2, l ≥ 2均为正整数. 首先验证(最后一步根据a = b和b ≥ a + 2两种情况分别验证)

δ(G4) = b l((a + b− 1)2 − 1)
4a

+
bl − 1

a
c − l(a + b− 2)

2
+

a + b− 2
2

≥

b2((a + b− 1)2 − 1)
4a

+
2b− 1

a
c − 2(a + b− 2)

2
+

a + b− 2
2

=

b (a + b− 1)2 − 1
2a

+
2b− 1

a
c − a + b− 2

2
≥ ba

2 + b2 + 2ab + 2a + 2b− 3
4a

c.
即G4满足定理3.1中最小度的条件要求. 为了得到至少两个孤立点, 显然要删除

Kb l((a+b−1)2−1)
4a + bl−1

a c− l(a+b−2)
2
中的所有顶点, 选择m(其中m ∈ [2, l]是整数)个K a+b

2
并对每个

K a+b
2
删除其中的a+b−2

2 个顶点. 从而根据孤立韧度的定义, 并设l((a + b− 1)2 − 1) + 4(bl − 1) =

4m13a + c13, 其中m13 ∈ N, c13 ∈ {0, 1, · · · , 4a− 1}, 可得

I(G4) = min
m∈{2,··· ,l}

{b
l((a+b−1)2−1)

4a + bl−1
a c − l(a+b−2)

2 + ma+b−2
2

m
} =

a + b− 2
2

+ min
m∈{2,··· ,l}

{b
l((a+b−1)2−1)

4a + bl−1
a c − l(a+b−2)

2

m
} =

a + b− 2
2

+
b l((a+b−1)2−1)

4a + bl−1
a c − l(a+b−2)

2

l
=

b l((a+b−1)2−1)
4a + bl−1

a c
l

=
l((a+b−1)2−1)

4a + bl−1
a − c13

4a

l
=

(a + b− 1)2 − 1
4a

+
b

a
−

4+c13
4a

l
.
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因此有I(G4) < (a+b−1)2−1
4a + b

a且 lim
l→+∞

I(G4) = (a+b−1)2−1
4a + b

a . 同理, 由于G4是有限图,

l < +∞, 因此I(G4)的值只能随着l的增大而无限逼近 (a+b−1)2−1
4a + b

a , 但不能到达该值. 设S =

V (Kb l((a+b−1)2−1)
4a + bl−1

a c− l(a+b−2)
2

), T = V (lK a+b
2

), 对任意x ∈ S有f(x) = g(x) = a成立; 对任

意x ∈ T有f(x) = g(x) = b成立. 则有

f(S)− g(T ) +
∑

x∈T

dG4−S(x) =

ab l((a + b− 1)2 − 1)
4a

+
lb− 1

a
c − a

l(a + b− 2)
2

− lb
a + b

2
+ l

a + b

2
a + b− 2

2
≤

a(
l((a + b− 1)2 − 1)

4a
+

lb− 1
a

)− al
a + b− 2

2
− l(a + b)(b + 2− a)

4
= −1.

根据引理2.2可知G4不存在分数(g, f)-因子.
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Isolated toughness and fractional (g, f)-factor
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Abstract: The isolated toughness condition for the existence of fractional (g, f)-factors in a graph

is studied using subgraph dividing approach. It is proved that if δ(G) ≥ ba2+b2+2ab+2a+2b−3
4a

c and

I(G) ≥
{

(a+b−1)2

4a
+ b

a
, if a 6≡ b(mod 2),

(a+b−1)2−1
4a

+ b
a
, if a ≡ b(mod 2),

then G admits a fractional (g, f)-factor. Counterexamples are presented to illustrate that both the

minimum degree and the isolated toughness bounds are tight.
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