
高校应用数学学报
2025, 40(4): 411-423

Heston随机波动率与双指数跳扩散组合模型的

双币种幂期权定价
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摘 要: 在股价满足双指数分布的跳跃扩散模型下, 应用Heston随机波动率模型刻画
波动率变化, 并综合考虑随机波动率对股价和汇率的关联性影响, 研究了双币种情形
下的幂期权定价问题. 通过积分变换、偏微分方程求解和Fourier逆变换等方法, 分别
得到了交割价格以国外货币和国内货币计价的双币种幂期权拟闭型定价公式. 数值
分析结果表明, Heston随机波动率与双指数跳扩散组合模型能较好地捕捉金融市场中
的“波动率微笑”现象, 且风险资产收益率的跳跃幅度和强度, 以及资产收益率和汇率
分别与波动率的相关系数对期权价格都有正向影响. 此外, 在参数相同的情况下该模
型比经典的Black-Scholes模型和Heston随机波动率模型具有更高的期权定价价格.
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§1 引 言

自1973年Black和Scholes[1]应用标准几何布朗运动(BS模型)刻画资产收益率变化建立期权
定价公式以来, 期权定价研究已成为金融衍生工具领域的核心内容和前沿课题之一, 这也为金融
资产的风险管理、对冲和套期保值提供了灵活多变的投资策略, 极大地促进了经济繁荣.

双币种期权作为一种金融衍生品, 近年来在国际贸易及跨境金融投资中广泛使用. 其特点
在于能够在不同的市场之间实现货币交易, 并有效应对外汇风险. 其基础资产多在境外市场, 而
通过本币在国内市场进行结算, 这样的设计使其成为对冲外汇风险的一个重要工具. 在双币种
定价研究中, 最初的理论框架主要建立在BS模型的基础上, Reiner[2]的研究为该领域的理论奠定
了基础. 随着金融市场的持续发展与复杂性增加, 后续研究开始探讨更为复杂和贴近市场实际
情况的双币种定价模型. Wong等人[3]提出了双指数跳跃扩散模型, 考虑资产价格跳跃的不对称
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性以及双指数分布的特点. Lee等人[4]探讨了利率波动对双币种期权价格的显著影响. 此外, 双
币种期权的种类也在不断增多, 例如出现了双币种回望期权[5], 因其特有的收益结构而引起了关
注, 为投资者提供了更为丰富的投资选择. Battauz等人[6]针对双币种美式期权的执行策略进行

了深入研究, 其灵活的行权特性, 为投资者决策提供了重要参考. 在中国,双币种期权的研究同样
取得一定的成果. 如郭培栋等人[7]对双币种博弈期权展开了深入探讨, 韦铸娥等人[8]则通过随机

波动率跳跃扩散模型对双币种任选期权进行了定价研究. 幂期权是一种新式的奇异期权, 它的收
益函数是标的资产价格的幂函数, 具有杠杆投资工具的强大作用. 关于幂期权的研究, 已有的工
作主要是在不同金融模型环境下对单币种幂型期权进行展开, 如Heynen等人[9]所提出的幂期权

定价模型, 探索环境因素如何影响期权的定价. 魏广华等人[10]探讨了随机利率对幂型期权的影

响, 而张立东等人[11]研究不确定性环境下幂期权的特性, Liu等人[12]利用Ornstein-Uhlenbeck模
型分析了市场波动性与幂期权之间的关系.

双币种幂期权是由双币种期权与幂期权结合而成的一种金融衍生品. 这种期权在双币种期
权的收益函数基础上引入了幂函数的效果, 能够在保证双币种期权固有特征的前提下, 有效地
对冲国际贸易面临的风险, 并通过幂函数的形式实现收益. 目前, 关于双币种幂期权的研究文献
仍然相对有限. 较为具代表性的研究工作包括Lee等人[13]和Lee等人[14]在经典几何布朗运动框架

下, 运用鞅理论分析了四种不同收益形式的双币种对称幂型期权的定价问题, 并推导出了相应的
定价解析公式. 此外, Javed[15]则关注了在布朗运动与Poisson跳跃相互作用下双币种幂期权及
其复合形式的定价研究.

需要注意的是, 上述双币种幂期权的研究工作都是在经典的BS模型下进行的, 而金融资
产的价格变化过程并不服从高斯过程. 因此, 很多学者对BS模型进行了改进或扩展以便能
更加有效地刻画金融资产价格的市场变化规律, 减小期权定价的系统误差. 常见的改良工
作有: (1) 在BS模型中引入复合Poisson过程刻画突发事件或重要信息对金融资产价格的影
响(如Merton[16], Kou[17]等); (2) 应用随机波动率模型(SV模型)反映资产收益率的波动时变性和
集聚性,捕捉金融市场中的“波动率微笑”和“杠杆效应”现象(如Heston[18],邓国和[19], Susanne等
人[20]等); (3) 同时引入复合Poisson过程和随机波动率跳跃扩散模型(SVJ模型)来刻画资产价格
及其波动率的跳跃变化特征(如Bates[21], Scott[22], 邓国和等人[23], 施秋红[24]等). 大量的文献研
究表明, 金融资产收益率是有偏的, 具有尖峰厚尾和“波动微笑”特征, 且资产收益与波动之间存
在着杠杆效应, 随机波动率模型能较好地捕捉到金融资产收益率的杠杆效应和“波动率微笑”现
象[25-28], 而双指数跳跃扩散模型在尖峰、厚尾拟合上更符合金融理论建模和实际需要[17, 29-31].
同时, 该类过程能同时反映市场受到冲击时的快速上涨和下跌跳跃, 更符合真实金融市场情形.

鉴于此, 本文应用Heston随机波动率模型与跳扩散过程来刻画双币种幂期权中标的资产价
格和汇率的变动, 并假定汇率和国外风险资产价格受到随机波动率因素的影响, 且风险资产受突
发事件或重要信息冲击时的跳跃风险服从双指数分布, 研究双币种幂期权定价问题. 本文余下部
分安排如下: §2构建Heston随机波动率模型以及双指数跳扩散模型, 同时运用偏微分方程求解
在定价过程中所需的联合条件特征函数. §3运用积分变换和Fourier逆变换等技术手段进行推导
双币种幂型期权的定价公式. §4是该模型的数值实例分析.



韦铸娥等: Heston随机波动率与双指数跳扩散组合模型的双币种幂期权定价 413

§2 模型及预备知识

2.1 模模模型型型

考虑一个无套利和无摩擦的金融市场, 它的所有不确定源由完备概率空间(Ω ,Ft, P )刻画.
定义概率空间上的三维标准布朗运动{Wt = (W 1

t ,W 2
t ,W 3

t )′, t ≥ 0}和一维纯跳跃过程Zt. 假
定Zt与Wt相互独立, σ-代数流Ft由Wt和Zt联合生成, 且满足通常条件的参数族. 由于跳跃的存
在, 故市场是不完全的. 在风险中性测度P下, 假设交易期限[0, T ]内t时刻以外币计价的资产对数

价格Xt = ln St和对数汇率Yt = lnFt满足动态过程

d




Xt

Yt

Vt


 =




rf − q − 1
2Vt − ρ1Vt − λk

rd − rf − 1
2Vt

α(θ − Vt)


 dt +

√
Vt




1 0 0
0 1 0
0 0 σv


 dWt +




1
0
0


 dZt. (1)

其中rd和rf分别表示国内和国外市场上的无风险利率, q表示资产的外币红利支付率, 相关系
数corr(dW 1

t ,dW 2
t ) = ρ1, corr(dW 1

t ,dW 3
t ) = ρ2, corr(dW 2

t ,dW 3
t ) = ρ3. 此外, 波动率的均值回

复速率α, 长期均值θ和波动率σv均为非负常数, 满足2αθ ≥ σ2
v . 跳跃过程{Zt, t ≥ 0}是定义为

Zt =
Nt∑

k=1

Jk (2)

的复合Poisson过程, 这里{Nt, t ≥ 0}是强度参数为λ的Poisson过程, J = {Jk}k≥1是独立同分布

的随机变量序列, 表示以国外资产收益率的跳跃大小. 假设Zt的跳跃幅度分布具有跳变换

ζ(c) =
pη1

η1 − c
+

(1− p)η2

η2 + c
, (3)

其中c ∈ C, k = ζ(1)− 1, η1和η2均为正实数, 且满足η1 > 1和η2 > 0. k, η1, η2为资产收益率的跳

跃服从双指数分布时的参数, 分别表示收益率的向上跳跃幅度, 向下跳跃幅度以及向上跳跃的概
率.

注注注1 (3)的变换结果来源于下述假定: 资产收益率跳跃大小J服从双指数分布, 即J有密度

函数f(x) = pη1e−η1x1(x≥0) + (1− p)η2eη2x1(x<0), 其中1(·)为示性函数.

注注注2 (1)-(3)包括了一些常见的市场模型. 例如, 如果忽略风险资产收益中的跳跃项, 则该
模型简化为Heston随机波动率模型(SV); 而当既不考虑资产收益率的跳跃, 又不将随机波动率
对资产及汇率收益率的影响考虑在内时, 该模型则简化为经典的BS模型.

2.2 联联联合合合条条条件件件特特特征征征函函函数数数

设Xt, Yt和Vt满足模型(1)-(3), 记ψ (t, u1, u2, u3;x, y, v, T ) = E[eiu1XT +iu2YT +iu3VT |Ft] =
E[eiu1XT +iu2YT +iu3VT |Xt = x, Yt = y, Vt = v] = Et[eiu1XT +iu2YT +iu3VT ]为随机向量(XT , YT , VT )
基于t时刻观测值(x, y, v)的联合条件特征函数, 其中Et[·]是基于概率测度P下的条件期望,
且u1, u2, u3为复数, t ∈ [0, T ], i =

√−1.

引引引理理理2.1 设Xt, Yt和Vt满足模型(1)-(3), 则联合条件特征函数ψ(t, u1, u2, u3;x, y, v, T )具有
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解析表达式exp{iu1x + iu2y + A(τ, u1, u2, u3)v + B(τ, u1, u2, u3)}, 其中

A(τ, u1, u2, u3) =
1
σ2

v

[
a(u1, u2) + γ(u1, u2)− 2γ(u1, u2)

c(u1, u2, u3)

]
, (4)

B(τ, u1, u2, u3) =
αθ

σ2
v

[
a(u1, u2)− γ(u1, u2)

]
τ − 2αθ

σ2
v

ln
c(u1, u2, u3)
d(u1, u2, u3)

+

[(rf − q − λk)iu1 + λζ(iu1)− λ)]τ + (rd − rf )iu2τ, (5)

c(u1, u2, u3) = 1− g(u1, u2, u3)e−γ(u1,u2)τ , d(u1, u2, u3) = 1− g(u1, u2, u3),

a(u1, u2) = α− σv

2∑

j=1

iujρj+1,

b(u1, u2) = −1
2

2∑

j=1

uj(uj + i)− ρ1u1(u2 + i),

γ(u1, u2) =
√

a2(u1, u2)− 2b(u1, u2)σ2
v ,

g(u1, u2, u3) =
iu3σ

2
v − a(u1, u2) + γ(u1, u2)

iu3σ2
v − a(u1, u2)− γ(u1, u2)

, τ = T − t.

证证证 记ψ = ψ(t, u1, u2, u3;x, y, v, T ),5 = (
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂v
),则由多维半鞅Itô公式和Feynamn-

Kac定理可知ψ满足

0 =
∂ψ

∂t
+

1
2
v5




1 ρ1 ρ2σv

ρ1 1 ρ3σv

ρ2σv ρ3σv σ2
v


5′ ψ +




rf − q − 1
2v − ρ1v − λk

rd − rf − 1
2v

α(θ − v)




′

5′ ψ +

λEt[ψ(t, u1, u2, u3;x + J, y, v, T )− ψ(t, u1, u2, u3;x, y, v, T )], (6)

其中边界条件满足ψ(T, u1, u2, u3;x, y, v, T ) = eiu1XT +iu2YT +iu3VT .
由于模型(1)-(3)具有仿射结构, 故方程(6)具有指数形式的解, 即ψ = exp{iu1x + iu2y +

A(t, u1, u2, u3)v+B(t, u1, u2, u3)}.于是将其代入(6),则待定系数A(t) = A(t, u1, u2, u3)和B(t) =
B(t, u1, u2, u3)满足




∂A

∂t
+

1
2
σ2

vA2 − (α− σv

2∑
j=1

iujρj+1)A− 1
2

2∑
j=1

uj(uj + i)− ρ1u1(u2 + i) = 0,

A(T ) = iu3,

(7)

和 



∂B

∂t
+ αθA + (rf − q − λk)iu1 + (rd − rf )iu2 + λζ(iu1)− λ = 0,

B(T ) = 0.
(8)

仿照文献[19]求解微分方程方法, 先解方程(7), 令τ = T − t, 于是方程(7)可变换为方程




∂A

∂τ
=

1
2
σ2

vA2 − a(u1, u2)A + b(u1, u2),

A(0) = iu3.
(9)
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将方程(9)中的第一个式子左右两端在[0, τ ]同时积分得∫ τ

0

dA
1
2
σ2

vA2 − a(u1, u2)A + b(u1, u2)
= τ.

根据不定积分公式

∫
dx

ax2 − bx + c
=

1
−√b2 − 4ac

ln[
2ax− b +

√
b2 − 4ac

2ax− b−√b2 − 4ac
]有

1
−γ(u1, u2)

(
ln

σ2
vA(τ)− a(u1, u2) + γ(u1, u2)

σ2
vA(τ)− a(u1, u2)− γ(u1, u2)

− ln
σ2

vA(0)− a(u1, u2) + γ(u1, u2)
σ2

vA(0)− a(u1, u2)− γ(u1, u2)
)

= τ,

进一步, 由初始条件A(0) = iu3有

σ2
vA(τ)− a(u1, u2) + γ(u1, u2)

σ2
vA(τ)− a(u1, u2)− γ(u1, u2)

=
σ2

v iu3 − a(u1, u2) + γ(u1, u2)
σ2

v iu3 − a(u1, u2)− γ(u1, u2)
e−γ(u1,u2)τ ,

整理结果可得到(4).
下面计算B(t)的表达式. 由方程(8)可得

B(τ) = αθ

∫ τ

0

A(s)ds + [(rf − q − λk)iu1 + (rd − rf )iu2 + λζ(iu1)− λ]τ. (10)

将(4)代入(10)中的积分部分, 有∫ τ

0

A(s)ds =
1
σ2

v

[
a(u1, u2)− γ(u1, u2)

]
τ − 1

σ2
v

ln
c(u1, u2, u3)
d(u1, u2, u3)

, (11)

结合(10)和(11)结果可得结果(5), 从而引理得证.
注注注3 (1) 当λ = 0, α > 0且σv > 0时, SVJ模型退化成SV模型, 此时

A(τ, u1, u2, u3) =
1
σ2

v

[
a(u1, u2) + γ(u1, u2)− 2γ(u1, u2)

c(u1, u2, u3)

]
,

B(τ, u1, u2, u3) =
αθ

σ2
v

[
a(u1, u2)− γ(u1, u2)

]
τ − 2αθ

σ2
v

ln
c(u1, u2, u3)
d(u1, u2, u3)

+ (12)

(rf − q)iu1τ + (rd − rf )iu2τ.

(2) 当λ = 0且α = σv = 0时, SVJ模型退化成BS模型, 此时

A(τ, u1, u2, u3) = iu3 + b(u1, u2)τ,

B(τ, u1, u2, u3) = (rf − q)iu1τ + (rd − rf )iu2τ.

§3 主要结果
本节分别在收益函数的指数项为对称情形及非对称情形下, 考虑以下两种类型的双币种幂

期权定价问题: 一类是期权交割价格以外国货币计价, 另一类是期权交割价格以本国货币计价.
3.1 期期期权权权交交交割割割价价价格格格以以以国国国外外外货货货币币币计计计价价价

假设双币种看涨幂期权的到期日和以外币计价的交割价格分别为T与K1, 于是在到期日
为T时, 以外币计价的双币种幂期权的收益为




[eYT (eXT −K1)+]m,对称幂期权,

emYT (emXT −Km
1 )+,非对称幂期权.

(13)
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其中指数m ≥ 0, (x)+ = max{x, 0} . 当m = 1时, (13)为以外币计价的双币种欧式看涨期权;
当m = 2时, (13)中的第一个式子为买入(eXT −K1)+份双币种欧式期权.

定定定理理理1 设Xt, Yt, Vt满足模型(1)-(3), 则以外币计价的双币种对称看涨幂期权在t时刻的价

格为

C
(1)
1 (t, x, y, v, K1, T ) = (14)

1
2π

e−rdτ

∫ +∞

−∞
e−(β1+iz)kψ(t, z − iβ1 − im,−im, 0;x, y, v, T )

Γ(iz + β1)Γ(m + 1)
Γ(iz + β1 + m + 1)

dz,

其中k = ln K1, β1 > 0为阻尼因子常数, Γ(a)是参数为a的Gamma函数.

证证证 设C
(1)
1 (t, x, y, v, K1, T )为以外币计价的双币种对称看涨幂期权在t时刻的价值, 则在风

险中性测度P下由无套利原理可知

C
(1)
1 (t, x, y, v, K1, T ) = Et

{
e−rd(T−t)[eYT (eXT −K1)+]m|Ft

}
= (15)

e−rd(T−t)

∫ +∞

−∞

∫ +∞

−∞
[ey(ex − ek)+]mPXT ,YT

dxdy,

这里PXT ,YT
是随机变量XT , YT在风险中性测度P下的联合密度函数, k = lnK1.

令Gt(k) =
∫ +∞
−∞

∫ +∞
−∞ ey[(ex − ek)+]mPXT ,YT

dxdy, 考虑到Gt(k)在实数域上可能不平方可
积, 为确保收敛性, 根据Carr和Madan[32]的做法, 引入阻尼因子β1 > 0, 使得gt(k) = eβ1kGt(k)在
实数域上平方可积, 这样可以分别构造gt(k)的Fourier变换及逆变换

F (z) =
∫

R

eizkgt(k)dk, (16)

gt(k) =
1
2π

∫

R

e−izkF (z)dz. (17)

于是Gt(k) = e−β1kgt(k) = 1
2π

∫
R

e−(β1+iz)kF (z)dz, 其中F (z)的表达式为

F (z) =
∫ +∞

−∞
e(iz+β1)k(

∫ +∞

−∞

∫ +∞

−∞
[ey(ex − ek)+]mPXT ,YT

dxdy)dk =

∫ +∞

−∞
e(iz+β1)k(

∫ +∞

−∞

∫ +∞

k

emy(ex − ek)mPXT ,YT
dxdy)dk =

∫ +∞

−∞

∫ +∞

−∞
(
∫ x

−∞
e(iz+β1)keym(ex − ek)mdk)PXT ,YT

dxdy =

∫ +∞

−∞

∫ +∞

−∞
em(x+y)(

∫ 0

−∞
e(iz+β1)(t+x)(1− et)mdt)PXT ,YT

dxdy =

∫ +∞

−∞

∫ +∞

−∞
e(m+iz+β1)x+my(

∫ 1

0

s(iz+β1−1)(1− s)mds)PXT ,YT
dxdy =

Et[ei(z−iβ1−im)XT +i(−im)YT ]
∫ 1

0

s(iz+β1−1)(1− s)mds =

ψ(t, z − iβ1 − im,−im, 0;x, y, v, T )
Γ(iz + β1)Γ(m + 1)
Γ(iz + β1 + m + 1)

. (18)

综合(15)-(18), 定理得证.

定定定理理理2 设Xt, Yt, Vt满足模型(1)-(3), 则以外币计价的双币种非对称看涨幂期权在t时刻的
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价格为

C
(1)
2 (t, x, y, v, K1, T ) = (19)

e−rdτ

2π

∫ +∞

−∞

me−(β1+iz)k

(β1 + iz)(β1 + iz + m)
ψ(t, z − iβ1 − im,−im, 0;x, y, v, T )dz.

证证证 设C
(1)
2 (t, x, y, v, K1, T )为以外币计价的双币种非对称看涨幂期权在t时刻的价值, 则由

无套利原理有

C
(1)
2 (t, x, y, v, K1, T ) = Et

{
e−rd(T−t)[emYT (emXT −Km

1 )+]|Ft

}
=

e−rd(T−t)

∫ +∞

−∞

∫ +∞

−∞
emy[(emx −Km

1 )+]PXT ,YT
dxdy

仿照定理1的证明过程可得到(19), 限于篇幅原因, 证明过程略.

3.2 期期期权权权交交交割割割价价价格格格以以以国国国内内内货货货币币币计计计价价价

假设双币种看涨幂期权的到期日和以国内货币计价的交割价格分别为T与K2, 于是, 在到
期日为T时, 以国内货币计价的双币种看涨幂期权的收益为




[(eXT +YT −K2)+]m,对称幂期权,

(em(XT +YT ) −Km
2 )+,非对称幂期权.

(20)

其中指数m ≥ 0. 当m = 1时, (20)是以国内货币计价的双币种欧式看涨期权; 当m = 2时, (20)中
的第一个式子是买入(eXT +YT −K2)+份以国内货币计价的双币种欧式期权.

定定定理理理3 设Xt, Yt, Vt满足模型(1)-(3), 则以国内货币计价的双币种对称看涨幂期权在t时刻

的价格为

C
(2)
1 (t, x, y, v, K2, T ) =

1
2π

e−rdτ

∫ +∞

−∞
e−(β2+iz)k̂ψ(t, z − iβ2 − im, z − iβ2 − im, 0;x, y, v, T )

Γ(iz + β2)Γ(m + 1)
Γ(iz + β2 + m + 1)

dz,

其中k̂ = ln K2, β2 > 0为阻尼因子常数, Γ(a)是参数为a的Gamma函数.

证明过程与定理1类似.

定定定理理理4 设Xt, Yt, Vt满足模型(1)-(3), 则以国内货币计价的双币种非对称看涨幂期权在t时

刻的价格为

C
(2)
2 (t, x, y, v, K2, T ) =

e−rdτ

2π

∫ +∞

−∞

me−(β2+iz)k̂

(β2 + iz)(β2 + iz + m)
ψ(t, z − iβ2 − im, z − iβ2 − im, 0;x, y, v, T )dz.

其中k̂ = ln K2, β2 > 0为阻尼因子常数, Γ(a)是参数为a的Gamma函数.

证明过程与定理1类似.

§4 数值实例分析
本节应用数值计算实例分析考察Heston随机波动率与双指数跳扩散组合模型(SVJ模型)下

双币种看涨幂期权的价格影响因素. 以对称幂期权为主要分析对象. 首先, 研究SVJ模型下双币
种看涨幂期权的”隐含波动率微笑”. 其次, 分析SVJ模型相较于BS模型及SV 模型在双币种幂期
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权定价上的差异性. 最后, 在SVJ模型下对期权的主要特征参数进行分析.
数值计算实例中的模型参数设定借鉴已有的研究文献, 其中利率rd, rf取值参考文献[8], 标

的资产的波动率, 跳跃风险参数参考文献[23], 汇率变动的参数值设定是基于假设值, 类似文
献[7], 其余参数设置参考文献[32], 保证 ψ(t, u1, u2, u3;x, y, v, T ) < +∞, 详细的模型参数设置见
表1. 为确保模型在计算过程中的稳定性和收敛性, 关于阻尼因子的选取依据见文献[32-33], 这
里选择阻尼因子β1 = 0.06和β2 = 0.06. 期权定价的公式以广义积分的形式呈现, 为了解决复杂
的无穷积分问题, 利用Mathematica9.0中的NIntegrate函数进行数值积分, 该函数能够自动选择
最适合的数值积分方法.

表1 参数表

参数符号 参数含义 参数值 参数符号 参数含义 参数值

σv 方差波动率 0.1 θ 长期均值 0.15

α 均值的回复速率 2 t 期权初始时间 0

T 期权到期时间 0.25 ρ1 汇率与资产价格的相关系数 0.1

ρ2 资产收益率的杠杆效应系数 0.3 ρ3 汇率的杠杆效应系数 0.4

rd 国内无风险利率 0.03 rf 国外无风险利率 0.01

q 风险资产的红利支付率 0.02 p 风险资产收益率上跳的概率 0.6

η1 资产收益率的上跳幅度 3 η2 资产收益率的下跳幅度 1

λ 跳跃强度 0.6 F0 初始汇率 8

v 方差初始值 0.04 K1 以外币计价的交割价格 6

S0 标的资产价格 8 K2 以本国货币计价的交割价格 6

图1和图2是以SVJ模型为基础, 将两类双币种看涨幂期权的价格作为基准计算BS模型中
相应双币种幂期权的隐含波动率. 可以发现, 两类双币种幂期权的隐含波动率曲线都存在明显
的“微笑”现象, 随着幂指数m的增大“微笑”现象的开口变得更加宽阔, 即隐含波动率曲线的曲率
显著降低; 随着幂指数m的增大, 右尾的偏度也随之增大. 此外, 相对于第一类期权, 第二类期权
的隐含波动率曲线关于幂指数m的变化差异性要小一些.
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图1 第一类双币种幂期权的隐含波动率曲线 图2 第二类双币种幂期权的隐含波动率曲线

表2和表3是比较SVJ模型, BS模型和SV模型下的期权价格差异性. 由表2和表3可知, SVJ模
型和SV模型下的两类双币种幂期权价格都高于BS模型下的对应幂期权价格, 说明幂期权的随机
波动及风险补偿价格是正向的, 这符合基本的金融市场特征. SVJ模型的幂期权价格高于SV模
型下的对应的幂期权价格, 这是由于SVJ模型中的标的资产跳参数对幂型期权的价格有正向调
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节作用, 体现了资产收益率的跳跃现象对期权价格的显著影响. 相对第二类双币种幂期权, 第一
类双币种幂期权的价格受SVJ模型的影响更显著, 这是由于第一类双币种幂期权的交割价格是
以国外货币计价, 波动率对汇率的杠杆作用较强. 此外, 实验结果还显示出两类双币种幂期权价
格在幂指数m有小幅增加的情况下会出现对应几何级数的增加变化, 说明双币种幂型期权价格
对于幂指数m非常敏感, 也体现出指数幂收益结构对双币种期权收益的重要影响, 这也意味着有
必要设置合理的幂指数来调节幂型双币种期权投资者的投资风险.

表2 三类模型下第一类双币种幂期权价格之比较

m = 1.1 m = 1.3

F0 S0 SVJ SV BS SVJ SV BS

8 7 12.8095 10.5147 10.1156 24.5306 17.5144 16.3614

8 23.3973 21.2191 21.0592 46.0187 38.4069 37.5652

9 35.0641 32.9572 32.8369 71.8805 63.6957 62.9027

10 47.2264 45.1654 45.04853 100.6540 91.8905 91.0600

10 7 16.3731 13.4399 12.9298 32.7862 23.4088 21.8678

8 29.9066 27.1224 26.9180 61.506 51.3320 50.2076

9 44.8191 42.1261 41.9724 96.0714 85.1321 84.0721

10 60.3651 57.7308 57.5812 134.5290 122.8160 121.7060

12 7 20.0093 16.4246 15.8012 41.5554 29.6698 27.7166

8 36.5482 33.1457 32.8959 77.9567 65.062 63.6363

9 54.7725 51.4814 51.2936 121.7670 107.9020 106.558

10 73.7709 70.5516 70.3688 170.5110 155.6640 154.2580

表3 三类模型下第二类双币种幂期权价格之比较

m = 1.1 m = 1.3

F0 S0 SVJ SV BS SVJ SV BS

8 7 74.2066 73.7902 73.7235 165.6350 162.4480 161.9270

8 87.3355 86.8665 86.7902 200.7040 196.9600 196.3460

9 100.6480 100.1250 100.0390 237.2550 232.9330 232.2230

10 114.1230 113.5450 113.4490 275.1590 270.2390 269.4300

10 7 97.3037 96.7943 96.7108 227.9860 223.8100 223.1240

8 114.1230 113.5450 113.4490 275.1590 270.2390 269.4300

9 131.1720 130.5250 130.4160 324.2850 318.5920 317.6550

10 148.4270 147.7080 147.5870 375.1970 368.7050 367.6360

12 7 120.9170 120.3110 120.2100 294.5860 289.3590 288.4990

8 141.5020 140.8111 140.6960 354.6270 348.4580 347.4420

9 162.3640 161.5880 161.4570 417.1210 409.9730 408.7940

10 183.4740 182.6100 182.4640 481.8600 473.7010 472.3540

表4考察SVJ模型中的第一类双币种看涨幂期权重要特征参数λ, η1, η2, ρ2和ρ3对期权价格的

影响. 除了λ, η1, η2, ρ2 和ρ3以外, 模型其他参数取值来自表1. 结果显示, 模型参数λ, η1和η2对双

币种看涨幂期权的定价具有正面影响. 这表明, 随着风险资产价格的提升, 双币种看涨幂期权的
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价值亦随之上升. 这是由于跳跃的强度与幅度导致的风险资产价格变化更为显著, 从而增强了
其对冲效果, 最终提高了期权的内在价值. 此外, 相关系数ρ2与ρ3同样对期权回报造成正向影响.
随着这两个相关系数值的增加, 方差与风险资产收益及汇率之间的相关性将增强, 更高的相关系
数会使得风险资产和汇率处于较高的水平, 从而提升期权行使的价值.

表4 SVJ模型参数λ, η1, η2, ρ2和ρ3对第一类双币种幂期权价格的影响

ρ2 = −0.3, ρ3 = −0.4 ρ2 = 0.3, ρ3 = 0.4

K1 λ = 0.6 λ = 0.9 λ = 0.6 λ = 0.9

η1 = 0.3, η2 = 0.1

11 0.7788 2.9675 0.8843 3.0895

12 0.1548 0.8754 0.2078 0.9880

13 0.0242 0.2050 0.0420 0.2675

14 0.0031 0.0391 0.0076 0.0635

η1 = 3, η2 = 1

11 4.4503 6.6698 4.4638 6.6839

12 3.8745 5.8413 3.8807 5.8491

13 3.4156 5.1735 3.4200 5.1797

14 3.0396 4.6236 3.0434 4.6290
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图3 基础资产初始价格对期权价格的影响 图4 汇率初始价格对期权价格的影响
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图5 方差初始值对期权价格的影响 图6 跳跃强度对期权价格的影响
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图3-图6分别给出了第一类双币种看涨幂期权对数价格在不同幂指数下关于标的资产初始
价格S0, 汇率初始价格F0, 方差初始值v0和跳跃强度参数λ的变化情况. 实验结果表明, 该种期权
的价格会随着幂指数、资产初始价格、汇率初始价格、方差初始值和跳跃强度的上涨而显著上

升, 随着初始方差的变大而缓慢上涨, 这也提醒投资者需要重视基础资产和汇率的波动对期权价
值的显著影响. 同时, 高方差值通过加大市场的波动性, 提供更多的获利机会. 然而, 跳跃强度参
数带来额外的利润机会, 但同时也带来更高的市场不确定性, 从而增加投资风险. 幂指数的增加
会导致期权价格的加速增长, 尤其是分别在较高的参数S0, F0, v0和λ范围内, 值的区别变得更加
明显, 期权具有更高的幂指数, 其所蕴含的潜在收益更为丰富, 这也反映出它更强的风险承担能
力和收益预期. 这些研究结果不仅支持理论分析, 还为投资者在制定期权投资策略时提供实践支
撑.

§5 结论
在本研究中, 利用Heston随机波动率双指数分布的跳跃扩散模型来描述标的资产的动态过

程. 通过采用数学工具, 如积分变换、偏微分方程的求解以及Fourier逆变换, 推导出了双币种幂
期权定价公式. 该模型能够较好地捕捉金融资产收益率的尖峰和厚尾特征, 并有效解释“波动率
微笑”现象. 与传统的BS模型及简单Heston模型相比, 此模型在期权定价方面具有更高的定价能
力. 通过对参数敏感性进行分析和数值模拟, 验证了本研究提出的模型理论, 为未来的研究奠定
坚实的基础.
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Pricing power quanto option based on double exponential
jump-diffusion model with Heston stochastic volatility
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Abstract: Under the jump diffusion model with double exponential distribution of stock prices,

the Heston stochastic volatility model is applied to characterize the volatility changes, and the correla-

tion effects of stochastic volatility on stock prices and exchange rates are comprehensively considered to

study the pricing problem of power options under the dual currency scenario. By using methods such

as integral transformation, solution of partial differential equations, and Fourier inverse transformation,

the quasi-closed-form pricing formulas of dual currency power options priced in foreign and domestic

currencies are obtained, respectively. Numerical analysis results show that the combined model of

Heston stochastic volatility model and the double exponential jump diffusion model can better capture

the ”volatility smile” phenomenon in financial markets, moreover the jump amplitude and intensity of

risk asset returns, as well as the correlation coefficients of risk asset returns and exchange rates with

volatility respectively all have a positive impact on the option price. In addition, the model has a higher

option pricing than the classical Black-Scholes model and Heston stochastic volatility model under the

same parameter conditions.

Keywords: Heston stochastic volatility model; double exponential distribution; quanto option;

power options; Fourier inversion transform
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