
高校应用数学学报
2025, 40(4): 379-393

混合曲面的改进GS-PIA算法
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摘 要: 曲面拟合的PIA方法, 通常是通过垂直堆叠矩阵的列, 将曲面拟合转化成

曲线拟合的PIA算法. 这需要计算矩阵的Kronecker积, 具有计算量大、运算时间长

等缺点. 为了避免Kronecker积的计算, 将求解矩阵方程的改进Gauss-Seidel方法与

经典PIA算法相结合, 文中提出了一种基于Gauss-Seidel型分裂的混合曲面的PIA算

法(GSTS-PIA). 首先, 对待拟合数据点计算出差向量; 然后, 通过Gauss-Seidel型分裂

矩阵计算出控制顶点的偏移量; 最后, 根据偏移量得到新的控制顶点, 从而生成拟合数

据点的曲面. 理论分析证明了生成的曲面序列的极限插值于给定数据点. 用不同混合

曲面拟合散乱数据点或规则曲面取样点的实验结果表明, 在达到相同拟合精度的情况

下, GSTS-PIA算法比经典PIA算法在所需迭代次数上平均减少78.30%, 运算时间上平

均减少80.96%.
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§1 引 言

数据插值是科学研究和工程计算中的一个重要问题. 通常, 可以通过直接求解相应的线性

方程组来得到插值曲线或曲面. 然而, 对于大型数据拟合问题, 直接解法往往计算量大, 有时还

不稳定. 经过进一步研究, 解决这一问题的各种迭代细化方法随之产生. 其中, 渐进迭代逼近

法(progressive iterative approximation, PIA)是通过迭代地调整控制顶点, 生成一组曲线或曲面

序列, 来插值原始数据点[1]. 该方法不仅避免了直接求解线性方程组, 而且还可以在求解过程中

灵活加入用户所需的几何约束条件, 这也是与传统插值逼近方法的一个重要差别[2]. PIA方法因

其动态操作、算法简单等优点, 目前已应用于几何外形设计、图像处理、数据压缩等领域[3-4].
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1975年, 齐东旭等[5]提出了均匀三次B样条曲线的盈亏修正算法. 1979年, de Boor[6]给出了

其收敛性证明. 随后, Lin等[7]将这一思想推广到非均匀三次B样条曲线曲面. 2005年, Lin等[8]证

明了具有归一化全正基的混合曲线曲面具有同样的特性, 并将其命名为渐进迭代逼近性质. 此

后, 国内外学者提出了多种不同的PIA格式[9-16], 比如引入权因子来提高收敛速度的加权渐进

迭代逼近(WPIA)[17], 具有更大灵活性的局部渐进迭代逼近(LPIA)[18], 用于处理大型数据拟

合问题的最小二乘渐进迭代逼近(LSPIA)[19], 提高隐式曲线曲面重建效率的隐式渐进迭代逼

近(IPIA)[20], 用于Catmull-Clark细分的渐进迭代逼近[21], 以及用于曲线曲面光顺的渐进迭代逼

近(Fairing-PIA)[22].

对于张量积混合曲面, 其基函数可以看作2个单变量全正基函数的乘积. 因此, 曲线的各

种PIA性质可以自然地推广到张量积混合曲面, 其传统方法是通过垂直堆叠矩阵的列将点阵

数据排列成列向量, 利用Kronecker积把曲面的PIA迭代格式转化为曲线形式. 这种方法虽然

简单明了, 易于操作, 但是在实际运用中, 因矩阵Kronecker积的计算量非常大, 使得运算时间

较长, 特别是在处理大型数据拟合问题上, 问题尤显严重. 那么, 如何解决这个问题呢? 笔者

想到, 本质上, PIA方法可被视为求解线性方程组的Richardson迭代算法[23]. 经典迭代法还包

括Jacobi迭代法、Gauss-Seidel迭代法、SOR迭代法等[24]. 如果将基于矩阵分裂的迭代方法融合

到曲面的PIA算法中, 将可有效避免使用Kronecker积, 计算量会遽降. 例如, 双三次B样条曲面

的Jacobi-PIA算法就是基于矩阵方程AXB = C的Jacobi分裂, 加上一个松弛因子而得到[14]. 混

合曲面的HSS-PIA方法则是在Hermitian和skew-Hermitian分裂迭代的基础上得到的[25].

参考以上有关分裂迭代的思维, 运用基于Gauss-Seidel分裂方法[26], 对矩阵方程AXB =

C中的系数矩阵A和B分别进行多次诱导分裂, 并与经典PIA方法相结合, 本文开发了一种混合

曲面的GSTS-PIA方法. 为了分析该方法的收敛性, 利用Kronecker积的性质, 将迭代格式中的矩

阵形式改写成列向量形式, 证明了由迭代格式生成的曲面序列是收敛的, 并且其极限曲面插值于

给定数据点. 实验结果表明了该方法的有效性.

§2 混合曲面的GSTS-PIA算法

给定一个数据点阵{Qij}m,n
i=1,j=1, 对每个数据点Qij赋予参数值(ui, vj), 并满足

u1 < u2 < · · · < um, v1 < v2 < · · · < vn.

为了保证边界点处的插值[7], 通过以下方式将原始数据点{Qij}m,n
i=1,j=1扩充得到初始的控制顶

点{P (0)
ij }m+1,n+1

i=0,j=0 ,



P
(0)
ij = Qij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n;

P
(0)
i0 = P

(0)
i1 , P

(0)
i,n+1 = P

(0)
i,n , P

(0)
0j = P

(0)
1j , P

(0)
m+1,j = P

(0)
m,j , i = 1, 2, · · · ,m, j = 1, 2, · · · , n;

P
(0)
00 = P

(0)
11 , P

(0)
0,n+1 = P

(0)
1,n, P

(0)
m+1,0 = P

(0)
m,1, P

(0)
m+1,n+1 = P (0)

m,n,

从而构造一张初始混合曲面

S(0)(u, v) =
m+1∑

i=0

n+1∑

j=0

P
(0)
ij Bi(u)Bj(v), u1 ≤ u ≤ um, v1 ≤ v ≤ vn,

其中{Bi(u), i = 1, · · · ,m}是一组m次全正混合(normalized totally positive, NTP)基函数[9], 这
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组基在参数列{u1 < u2 < · · · < um}上的配置矩阵为

A1 = (Bj(ui)) i=1,...,m
j=1,...,m

,




B1(u1) B2(u1) . . . Bm(u1)

B1(u2) B2(u2) · · · Bm(u2)
...

...
. . .

...

B1(um) B2(um) · · · Bm(um)




.

类似地, n次NTP基函数{Bj(v), j = 1, · · · , n}在{v1 < v2 < · · · < vn}上的配置矩阵为
A2 = (Bj(vi)) i=1,...,n

j=1,...,n
.

扩充后的数据点对应的配置矩阵为

B1 =




1

A1

1


 , B2 =




1

A2

1


 . (1)

本文要解决的曲面拟合问题是寻找控制顶点为{Pij}m+1,n+1
i=0,j=0 的混合曲面去插值原始数据

点{Qij}m,n
i=1,j=1. 传统的PIA方法是采取垂直堆叠矩阵的列[14],即

p = [P00, P10, · · · , Pm+1,0, P01, · · · , Pm+1,1 · · · , Pm+1,n+1]T,

q = [Q00, Q10, · · · , Qm+1,0, Q01, · · · , Qm+1,1 · · · , Qm+1,n+1]T,

此时, 曲面PIA方法中的配置矩阵是B1和B2的Kronecker积, 即

b = B2 ⊗B1,

其中⊗表示Kronecker积, 那么曲面的PIA迭代格式可转化为曲线形式



η(k) = q − bp(k),

p(k+1) = p(k) + η(k).

上述做法需要计算矩阵的Kronecker积,计算量大. 为了避免Kronecker积的计算, 本文提出

的GSTS-PIA算法舍去了传统的转化过程, 直接给出了迭代格式的矩阵表示, 从而极大地减小运

算量.

对(1)定义的配置矩阵B1进行如下Gauss-Seidel分裂

B1 = L1 − U1, (2)

其中

L1 =




1

0 B1(u1)

0 B1(u2) B2(u2)

...
...

...
. . .

0 B1(um) B2(um) · · · Bm(um)

0 0 · · · 0 0 1




, U1 =




0 0 0 · · · 0 0

0 −B2(u1) · · · −Bm(u1) 0

0 · · · −Bm(u2) 0

. . .
...

...

0 0

0




,

类似地, 对BT
2进行如下Gauss-Seidel分裂

BT
2 = L2 − U2, (3)

其中矩阵L2, U2的定义类似(2)中的L1, U1.

定义方阵X的一个n次多项式fn(X)为

fn(X) = I + X + · · ·+ Xn, (4)
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其中I是与X同阶的单位矩阵. 若(2)和(3)中的矩阵L1, L2是非奇异的, 那么令

M1 = fr−1(G1)L−1
1 , M2 = L−1

2 fs−1(G2), (5)

其中函数fn如(4)所定义, 且

G1 = L−1
1 U1, G2 = U2L

−1
2 , (6)

参数r, s是使得矩阵G1和G2的谱半径满足

(ρr(G1) + 1)2 + (ρs(G2) + 1)2 < 4 (7)

的正整数.

首先, 对每个数据点Qij , 计算其对应的差向量[7]





δ
(0)
ij = Qij − S(0)(ui, vj), i = 1, 2, · · · ,m, j = 1, 2, · · · , n;

{δ(0)
h0 = δ

(0)
h1 , δ

(0)
h,n+1 = δ

(0)
h,n}m

h=1, {δ(0)
0l = δ

(0)
1l , δ

(0)
m+1,l = δ

(0)
m,l}n

l=1;

δ
(0)
00 = δ

(0)
0,n+1 = δ

(0)
m+1,0 = δ

(0)
m+1,n+1 = 0,

将上式改写成矩阵形式为

δ(0) = Q−B1P
(0)BT

2 ,

其中B1, B2如(1)所示, Q = (Qij) i=0,··· ,m+1
j=0,··· ,n+1

= P (0)是扩充数据点的矩阵表示,

P (k) = (P (k)
ij ) i=0,··· ,m+1

j=0,··· ,n+1
, k = 0, 1, · · ·

是第k次迭代曲面的控制顶点的矩阵表示.

然后, 对每个控制顶点P
(0)
ij , 构造其差向量, 并表示成矩阵形式

∆(0)=M1δ
(0)M2,

其中矩阵M1,M2如(5)所定义, 由此得到新的迭代控制顶点

P (1)=P (0)+∆(0),

从而生成新的混合曲面

S(1)(u, v) =
m+1∑

i=0

n+1∑

j=0

P
(1)
ij Bi(u)Bj(v).

类似地, 假设k次迭代后得到第k次迭代曲面的控制顶点P (k). 根据迭代格式



δ(k) = Q−B1P
(k)BT

2

∆(k)=M1δ
(k)M2

P (k+1)=P (k)+∆(k)

, (8)

其中矩阵M1,M2如式(5)所定义, 则第k + 1次的迭代曲面可表示为

S(k+1)(u, v) =
m+1∑

i=0

n+1∑

j=0

P
(k+1)
ij Bi(u)Bj(v).

重复上述迭代过程可以生成一个曲面序列{S(k)(u, v), k = 0, 1, · · · }. 下面将证明这个曲面
序列是收敛的, 并且其极限曲面插值于原始数据点{Qij}m,n

i=1,j=1.

备注2.1 若参数r = s = 1满足(7)时, 迭代格式(8)退化为

P (k+1) = P (k) + L−1
1 (Q−B1P

(k)BT
2 )L−1

2 ,

正如文献[26]所说，上式恰好是文献[27]提出的Gauss-Seidel-type迭代算法的迭代格式的矩阵表

示形式. 在算法设计时, 先判断参数r = s = 1是否满足(7). 若不满足, 则r, s逐一增加, 直到满

足(7)为止.
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§3 GSTS-PIA算法的收敛性分析

引理3.1[28] 若矩阵A和I −G都非奇异, 那么存在唯一矩阵对WG和NG, 使得

G = WGNG, A = W−1
G −NG.

其中WG是非奇异矩阵. 称A = W−1
G −NG是矩阵A被G诱导出的分裂.

引理3.2[29-30] Kronecker积具有以下性质1)-3).

已知矩阵A ∈ Rm×m, B ∈ Rn×n, C ∈ Rn×n和X ∈ Rm×n, 那么

1) vec(AXB) = (BT ⊗ A)vec(X), 其中算子vec(·)是通过垂直堆叠矩阵的列将矩阵转换成的列
向量;

2) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

3) λ(I ⊗A + BT ⊗ I −BT ⊗A) = {λi + µj − λiµj |λi ∈ λ(A), µj ∈ λ(B)}, 其中λ表示矩阵的谱

集.

引理3.3 矩阵G1和G2如(6)定义, 若不等式(7)成立, 那么ρr(G1) <
√

3− 1, 且

ρs(G2) <
√

3− 1.

证 由于谱半径ρ(G1) > 0, ρ(G2) > 0, 那么ρr(G1) > 0, ρs(G2) > 0, 其中参数r, s是满

足不等式(7)的正整数, 故(ρr(G1) + 1)2 > 1. 又结合不等式(7), 可得到(ρs(G2) + 1)2 < 3,

即ρs(G2) <
√

3− 1. 同理可证ρr(G1) <
√

3− 1.

引理3.4 若定义如(1)的配置矩阵B1和B2都是非奇异的, 其主对角线元素都非零, 并且存

在N1, N2 ∈ N+, 使得当r ≥ N1, s ≥ N2时, 由(6)定义的矩阵G1和G2的谱半径满足(7), 那么分别

存在唯一的矩阵对M1, N1和M2, N2, 使得

B1 = M−1
1 −N1, BT

2 = M−1
2 −N2, (9)

其中矩阵M1,M2如(5)所定义.

证 由于矩阵B1的主对角线元素非零, 那么由(2)分裂出的下三角阵L1是非奇异的. 已知存

在N1 ∈ N+,当r ≥ N1时,矩阵G1的谱半径满足(7),根据引理3.3,有ρ(Gr
1) = ρr(G1) <

√
3−1 <

1, 那么矩阵I −Gr
1可逆. 又因为矩阵B1是非奇异的, 根据引理3.1, 存在唯一的矩阵对W1, N1, 使

得

Gr
1 = W1N1, (10)

而由Gr
1诱导出矩阵B1的分裂为

B1 = W−1
1 −N1,

其中W1可逆. 由(10)得到N1 = W−1
1 Gr

1, 将其代入上式得

B1 = W−1
1 (I −Gr

1).

又配置矩阵B1非奇异, 于是有

W1 = (I −Gr
1)B

−1
1 = (I + G1 + · · ·+ Gr−1

1 )(I −G1)B−1
1 . (11)

由于L1可逆, 根据(2)和G1的定义(6), 配置矩阵B1可表示成

B1 = L1 − U1 = L1(I −G1).

将上式代入(11), 得到

W1 = (I + G1 + · · ·+ Gr−1
1 )L−1

1 = fr−1(G1)L−1
1 ,

这里矩阵函数fn如(4)所定义, 此时W1就等于(5)中定义的M1.
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类似地, 根据引理3.1, 可证对矩阵BT
2 , 存在唯一的矩阵对M2, N2, 使得

BT
2 = M−1

2 −N2, Gs
2 = N2M2,

其中矩阵M2可逆, 如(5)所定义, G2的定义如(6)所示.

定理3.1 若定义如(1)的配置矩阵B1和B2都是非奇异的, 其主对角线元素都非零, 并且存

在N1, N2 ∈ N+, 使得当r ≥ N1, s ≥ N2时, 由(6)定义的矩阵G1和G2的谱半径满足(7), 那么根

据迭代格式(8)生成的曲面序列{S(k)(u, v), k = 0, 1, · · · }是收敛的, 且它的极限曲面插值于数据

点{Qij}m,n
i=1,j=1.

证 根据迭代格式(8), 可以得到第k次迭代的控制顶点和第k + 1次迭代的控制顶点之间的

关系

P (k+1) = P (k) + M1(Q−B1P
(k)BT

2 )M2,

其中, M1,M2如(5)所示, 由于配置矩阵B1和B2是非奇异的, 那么上式可改写成

P (k+1) −B−1
1 Q(BT

2 )
−1

= P (k) −B−1
1 Q(BT

2 )
−1 −M1B1[P (k) −B−1

1 Q(BT
2 )
−1

]BT
2 M2. (12)

已知存在N1 ∈ N+, 使得当r ≥ N1时, 如(6)定义的矩阵G1的谱半径满足(7), 那么根据引

理3.4, 存在唯一矩阵对M1与N1, 将配置矩阵B1分裂成(9). 又根据(10), 有

M1B1 = M1(M−1
1 −N1) = I −M1N1 = I −Gr

1,

同理, 可以得到

BT
2 M2 = I −Gs

2,

其中可逆矩阵M1,M2如(5)所定义. 将以上两式同时代入(12), 得到

P (k+1) −B−1
1 Q(BT

2 )
−1

=

P (k) −B−1
1 Q(BT

2 )
−1 − (I −Gr

1)[P
(k) −B−1

1 Q(BT
2 )
−1

](I −Gs
2) =

Gr
1P

(k) + P (k)Gs
2 −Gr

1P
(k)Gs

2 −Gr
1B

−1
1 Q(BT

2 )
−1 −B−1

1 Q(BT
2 )
−1

Gs
2 + Gr

1B
−1
1 Q(BT

2 )
−1

Gs
2.

为了方便证明该迭代算法的收敛性, 利用引理3.2中Kronecker积的性质1, 用vec算子将上式

的矩阵形式改写成列向量形式

p(k+1) − (B−1
2 ⊗B−1

1 )q =

[I ⊗Gr
1 + (Gs

2)
T ⊗ I − (Gs

2)
T ⊗Gr

1]p
(k) − [B−1

2 ⊗ (Gr
1B

−1
1 )]q −

[
((Gs

2)
T
B−1

2 )⊗B−1
1

]
q +

[
((Gs

2)
T
B−1

2 )⊗ (Gr
1B

−1
1 )

]
q,

其中⊗表示Kronecker积, p(k+1) = vec(P (k+1)), q = vec(Q)分别是数据点P (k+1)和Q的列向量表

示形式.

根据引理3.2中Kronecker积的性质2, 上式可改写成

p(k+1) − (B−1
2 ⊗B−1

1 )q = D
[
p(k) − (B−1

2 ⊗B−1
1 )q

]
,

其中D是迭代矩阵

D = I ⊗Gr
1 + (Gs

2)
T ⊗ I − (Gs

2)
T ⊗Gr

1. (13)

重复上述迭代公式, 可以得到

p(k+1) − (B−1
2 ⊗B−1

1 )q =

D2
[
p(k−1) − (B−1

2 ⊗B−1
1 )q

]
= · · · = Dk+1

[
p(0) − (B−1

2 ⊗B−1
1 )

]
q. (14)
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根据引理3.2中Kronecker积的性质3, 由(13)定义的迭代矩阵D的谱集可表示为

λ(D) = {λr
i + µs

j − λr
i µ

s
j |λi ∈ λ(G1), µj ∈ λ(G2), i = 0, 1, · · · ,m + 1, j = 0, 1, · · · , n + 1}.

由于 ∣∣λr
i + µs

j − λr
i µ

s
j

∣∣ ≤ ρr(G1) + ρs(G2) + ρr(G1)ρs(G2),

因此, 迭代矩阵D的谱半径满足

ρ(D) ≤ ρr(G1) + ρs(G2) + ρr(G1)ρs(G2).

根据均值不等式, 有

ρ(D) ≤ ρr(G1) + ρs(G2) +
[ρr(G1)]

2 + [ρs(G2)]
2

2
=

[ρr(G1) + 1]2 + [ρs(G2) + 1]2

2
− 1,

又矩阵G1和G2的谱半径满足(7), 结合上式, 可知D的谱半径满足ρ(D) < 1, 且

lim
k→∞

Dk+1 = O,

其中O是(m + 2)(n + 2)阶零矩阵. 这意味着当k →∞时, (14)的极限是

p(∞) = (B−1
2 ⊗B−1

1 )q,

其矩阵形式就是

P (∞) = B−1
1 Q(BT

2 )
−1

.

这意味着P (∞)就是矩阵方程B1XBT
2 = Q的解. 故由迭代格式(8)生成的曲面序列{S(k)(u, v),

k = 0, 1, · · · }是收敛的, 且它的极限曲面插值于数据点{Qij}m,n
i=1,j=1.

§4 实例分析
本节将用4个数值实例来验证本文提出的GSTS-PIA方法的有效性,并与经典PIA[8]、Jacobi-

PIA(JPIA)[14]、加权PIA(WPIA)[17]和GS-PIA[31-32]这四种方法进行比较. 所有数值实验在安

装Intel CPU处理器(1.80GHz, 8GB RAM, i5 64-bit)的PC端上运行Matlab R2019a实现. 由

于B样条基函数和Bernstein基函数都是NTP基[33], 用双三次B样条曲面和张量积Bézier曲面去

拟合这些数据点. 定义第k次迭代曲面的拟合误差为[12]

εk = max
{∥∥∥δ

(k)
ij

∥∥∥ , i = 0, 1, · · · ,m + 1, j = 0, 1, · · · , n + 1
}

,

其中δ
(k)
ij 为迭代格式(8)中δ(k)的分量形式，且范数为欧几里得范数.

本文扩充点的参数和节点向量取法类似于JPIA算法的计算方法[14]. 首先根据累加弦长

法[34], 计算每个数据点Qij的参数值ui和vj得到

ui =
1
n

n∑

j=1

ti,j , vj =
1
m

m∑

i=1

ti,j , i = 1, · · · ,m, j = 1, · · · , n,

其中

t1,j = 0, ti,j = ti−1,j +
‖Qij −Qi−1,j‖∑m
i=2 ‖Qij −Qi−1,j‖ , i = 2, · · · ,m, j = 1, · · · , n.

为了得到边界插值的曲面, 利用多重节点法[14]计算节点向量为U = {ūi}m+5
i=0 , 其中

ūi+2 = ui, i = 1, 2, · · · ,m, (15)

且ū0 = ū1 = ū2 = ū3, ūm+2 = ūm+3 = ūm+4 = ūm+5. 节点向量V = {v̄j}n+5
j=0可类似得到.

例4.1 用4×3次Bézier曲面拟合5×4个数据点(1,1,1), (1,2,4), (1,3,2), (1,4,2), (1,5,2), (2,1,2),

(2,2,2), (2,3,3), (2,4,6), (2,5,4), (3,1,3), (3,2,2), (3,3,4), (3,4,4), (3,5,3), (4,1,4), (4,2,6), (4,3,1),

(4,4,1), (4,5,2)[14].
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例4.2 用双三次B样条曲面拟合Ear-cut模型上采样的21×21个网格数据点[12].

例4.3 用双三次B样条曲面拟合从一张Tranguloid-trefoil曲面上均匀采样得到的21×31个

网格数据点, 其参数方程为[12]





x = 2 sin(3t)/(2 + cos s), (t, s ∈ [−π, π]),

y = 2(sin t + 2 sin(2t))/(2 + cos(s + 2π/3 )),

z = (cos t− 2 cos(2t))(2 + cos s)(2 + cos(s + 2π/3))/4.

例4.4 用双三次B样条曲面拟合Mannequin模型上采样的161×121个网格数据点[10].

例4.1中Bernstein基函数是NTP基[33],由于4次Bernstein基函数是

B4
i (u) = Ci

4u
i(1− u)4−i

, i = 0, 1, · · · , 4,

且[u2, u4] ∈ (0, 1), 则(1)定义的配置矩阵B1中元素Bi(ui) = B4
i−1(ui) > 0, i = 1, · · · , 5, 即B1的

主对角线元素皆大于0. 同理, 可证(1)中的矩阵B2的主对角线元素皆大于0. 选取r = s = 2时, 条

件(7)满足. 此时, 例4.1符合定理3.1的收敛条件.

例4.2-例4.4中三次B样条基函数也是NTP基[33], 此时根据(15), 配置矩阵B1的主对角线元素

是1, B1(ū3), B2(ū4), · · · , Bm(ūm+2), 1. 根据B样条基函数的局部支撑性和非负性, 其主对角线

元素Bi(ūi+2) > 0, i = 1, · · · ,m. 同理, (1)中的配置矩阵B2的主对角线元素也都为正. 选取参

数r = s = 1时, 条件(7)满足, GSTS-PIA方法退化为GS-PIA方法. 此时, 例4.2-4.4符合定理3.1的

收敛条件.

用GSTS-PIA算法对例4.1-例4.4的数据点进行拟合的结果如图1-图4所示, 其中图(a)是初始

迭代曲面,圆点表示原始数据点,图(b)是迭代10次的拟合曲面,图(c)是达到代数精度1×10−12的

极限拟合曲面, 图(d)是四种迭代方法在达到代数精度1× 10−12所需的迭代次数与拟合误差的关

系比较图, 拟合误差用对数尺度绘制. 从图1(d)-图4(d)可以明显看出, GSTS-PIA算法所需的迭

代次数要明显少于其他三种方法. 当用双三次B样条曲面拟合时, JPIA和WPIA方法所需的迭代

次数相当.

表1列出了不同迭代次数下四种方法的拟合误差, 例4.1-例4.4的初始误差ε0分别为2.4893 ×
100 , 1.8916 × 10−2, 2.9175 × 10−1, 6.1956 × 10−3. 在相同的迭代次数下, GSTS-PIA方法的

拟合误差最小, 比其他三种方法的拟合误差要小至少一个数量级. 表2给出了在不同误差

精度下, 用PIA, JPIA, WPIA, GS-PIA和GSTS-PIA方法拟合例4.1-例4.4的数据点所需的迭代

次数与运行时间(运行10次取平均). 可以看出, 在误差达到相同精度下, GSTS-PIA方法所需

的迭代次数最少, 并且运行时间最短. 由于例4.2-例4.4中GSTS-PIA方法退化为GS-PIA方法,

因此两种方法的迭代次数和拟合误差相同. 当误差精度达到1 × 10−7时, 例4.1中本文方法所

需的运行时间仅为经典PIA方法的3.36%, JPIA方法的12.66%, WPIA方法的6.45%, GS-PIA方

法的76.92%. 当误差精度达到1 × 10−12时, 例4.2-例4.4中本文方法所需的运行时间仅为经

典PIA方法的0.53% ∼ 34.21%, JPIA方法的34.71% ∼ 44.39%, WPIA方法的0.93% ∼ 45.05%,

GS-PIA方法的1.07% ∼ 68.12%. 进一步, 为了探究参数r和s对算法的影响, 表3给出了在误差精

度为1 × 10−12时, GSTS-PIA方法在不同的参数r和s下所需的迭代次数与运行时间(运行10次取

平均). 可以看出, 随着r和s的增大, 迭代次数减少, 但运行时间并未持续缩短, 说明参数r和s并

非越大越好. 这是由于参数r和s增大虽然加快了收敛速度, 但是其迭代格式更加复杂, 导致单次
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迭代的计算量增加.

(a) 第0次迭代曲面 (b) 第10次迭代曲面

(c) 第31次迭代曲面
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(d) 迭代次数与误差关系图

图 1 用GSTS-PIA算法拟合例4.1数据点的迭代曲面和误差曲线比较图

(a) 第0次迭代曲面 (b) 第10次迭代曲面
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(c) 第33次迭代曲面
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(d) 迭代次数与误差关系图

图 2 用GSTS-PIA算法拟合例4.2数据点的迭代曲面和误差曲线比较图

(a) 第0次迭代曲面 (b) 第10次迭代曲面

(c) 第38次迭代曲面
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(d) 迭代次数与误差关系图

图 3 用GSTS-PIA算法拟合例4.3数据点的迭代曲面和误差曲线比较图
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(a) 第0次迭代曲面 (b) 第10次迭代曲面

(c) 第32次迭代曲面
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(d) 迭代次数与误差关系图

图 4 用GSTS-PIA算法拟合例4.4数据点的迭代曲面和误差曲线比较图
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表 1 不同迭代次数下例4.1-例4.4的迭代拟合误差

实例 方法 ε10 ε30 ε50

例4.1

PIA 8.3882× 10−1 5.0690× 10−1 3.7855× 10−1

JPIA 9.0212× 10−1 2.1191× 10−1 5.0446× 10−2

WPIA 6.3269× 10−1 3.2412× 10−1 1.6439× 10−1

GSTS-PIA 3.3778× 10−4 1.2285× 10−12 6.2804× 10−16

例4.2

PIA 3.6666× 10−4 1.0950× 10−5 8.5431× 10−7

JPIA 2.8170× 10−4 1.7806× 10−6 1.6578× 10−8

WPIA 2.2191× 10−4 1.4490× 10−6 1.2985× 10−8

GSTS-PIA 2.5156× 10−6 3.2528× 10−12 7.8505× 10−17

例4.3

PIA 8.9082× 10−4 7.6092× 10−6 5.8546× 10−7

JPIA 1.4456× 10−2 4.9482× 10−5 4.8054× 10−7

WPIA 6.5810× 10−3 2.8150× 10−5 2.6798× 10−7

GSTS-PIA 2.4560× 10−4 7.0610× 10−11 1.0175× 10−15

例4.4

PIA 1.2114× 10−4 4.8749× 10−6 3.0211× 10−7

JPIA 1.0672× 10−4 5.5585× 10−7 5.1799× 10−9

WPIA 1.0365× 10−4 5.2579× 10−7 4.7776× 10−9

GSTS-PIA 8.0940× 10−7 1.9992× 10−12 3.3537× 10−16

表 2 在不同误差精度下曲面拟合所需的迭代次数与运行时间比较

实例 方法
1×10−3 1×10−5 1×10−7

次数 时间(s) 次数 时间(s) 次数 时间(s)

例4.1

PIA 395 0.0121 662 0.0191 929 0.0298

JPIA 105 0.0054 169 0.0060 233 0.0079

WPIA 200 0.0073 334 0.0104 469 0.0155

GS-PIA 25 0.0007 38 0.0008 51 0.0013

GSTS-PIA 9 0.0006 14 0.0007 19 0.0010

1×10−7 1×10−10 1×10−12

次数 时间(s) 次数 时间(s) 次数 时间(s)

例4.2

PIA 69 0.0105 128 0.0175 166 0.0210

JPIA 43 0.0062 73 0.0103 93 0.0133

WPIA 42 0.0064 71 0.0100 91 0.0124

GS-PIA 15 0.0042 25 0.0057 33 0.0069

GSTS-PIA 15 0.0023 25 0.0038 33 0.0047

例4.3

PIA 64 0.0168 120 0.0234 159 0.0266

JPIA 58 0.0117 88 0.0188 109 0.0205

WPIA 55 0.0152 85 0.0164 104 0.0202

GS-PIA 20 0.0103 30 0.0150 38 0.0195

GSTS-PIA 20 0.0050 30 0.0087 38 0.0091

例4.4

PIA 59 13.6659 113 25.6983 150 36.4984

JPIA 38 0.2631 68 0.4310 88 0.5558

WPIA 38 9.4997 67 15.9326 87 20.8493

GS-PIA 13 8.4838 24 13.8064 32 18.0154

GSTS-PIA 13 0.1132 24 0.1638 32 0.1929
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表 3 在不同r, s下GSTS-PIA方法所需迭代次数与运行时间比较

r, s
例4.2 例4.3 例4.4

次数 时间(ms) 次数 时间(ms) 次数 时间(ms)

1,1 33 6.4394 38 10.0155 32 217.6481

1,2 22 5.2158 25 7.5891 21 165.3351

2,2 13 3.8350 14 5.4056 12 124.9828

2,3 10 3.3116 12 6.7277 10 111.4896

3,3 8 3.0477 9 4.2983 7 89.4204

3,4 7 2.8847 8 6.1720 7 94.3524

4,4 6 2.8135 6 3.6860 5 84.3101

4,5 5 2.5974 6 4.4231 5 96.9931

5,5 5 2.6835 5 4.2302 4 88.0025

5,6 4 2.5168 5 3.2287 4 81.3321

6,6 4 2.5441 4 3.2467 4 83.5687

6,7 4 2.6323 4 3.6730 3 75.8459

7,7 3 2.3876 4 3.8189 3 76.3972

7,8 3 2.3414 4 4.0158 3 78.6261

8,8 3 2.3636 3 3.1334 3 77.1841

§5 结语

本文将矩阵方程的改进Gauss-Seidel分裂方法与经典PIA算法相结合, 提出了混合曲面

的GSTS-PIA方法, 并证明了该方法生成的曲面序列收敛到的极限曲面插值于原始数据点. 数值

实例表明本文方法加快了收敛速度, 提高了计算效率. 后续将尝试应用于细分曲面、曲面光顺、

隐式曲面重建等领域. 尽管本文的数值实验验证了随着参数r和s的增大, GSTS-PIA方法的所需

迭代次数会减少, 但是每次迭代的计算量会增加. 如何找到最优的r和s使得算法的CPU执行时

间最少是一个值得深入探讨的问题.
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Improved GS-PIA algorithm for blending surfaces
HU Qian-qian1, DONG Wen-qing1, YAO Zhen-min1, WANG Guo-jin2

(1. School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China;

2. College of Mathematics, Zhejiang University, Hangzhou 310027, China)

Abstract: The PIA method for surface fitting usually transforms surface fitting into curve fitting

by vertically stacking the columns of matrix. It needs to calculate the Kronecker product of the

matrix, which has the disadvantages of large computation and long running-time. In order to avoid

the calculation of the Kronecker product, a new PIA algorithm for blending surfaces is proposed based

on Gauss-Seidel type splitting (GSTS-PIA), which combines the improved Gauss-Seidel method for

solving matrix equation with the classical PIA algorithm. First, the difference vector is calculated for

each fitting data point. Then, the difference vector for each control point is calculated according to the

Gauss-Seidel type splitting matrix. Finally, new control points are obtained by the difference vectors,

and a surface for fitting the data points is generated. Theoretical analysis proves that the limit of

the surface sequence interpolates the given data points. The experimental results of fitting scattered

data points or sampling points from regular surfaces with different blending surfaces demonstrate that

compared with the classical PIA algorithm, the GSTS-PIA algorithm requires an average reduction of

78.30% in the number of iterations and an average reduction of 80.96% in running-time under the same

fitting accuracy.
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